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Abstract—High-level programming models such as OpenMP
and OpenACC are used to accelerate loop-parallelizable applica-
tions. In such applications, a very large number of loop iterations
are launched as threads on the accelerator, where every iteration
executes the same code sequence (loop body or kernel) but on
different data. In such workloads, similarities in the input lead to
wide similarities in the outputs. Motivated by this observation,
we propose to run only a subset of loop iterations, accurately
calculating some outputs and approximating the rest. To this
end, we propose employing a new directive in OpenACC to trade
off performance for accuracy by perforating loop iterations. The
directive is only applicable to parallel loops with a perforation
rate adjusted by the programmer. Moreover, we investigate the
quality and runtime impact of this directive. In summary, first,
we show that naïvely applying loop perforation to OpenACC,
degrades performance significantly. This is because OpenACC
parallel loops are often output-parallelized and every iteration
calculates one single entry in the output. Consequently, dropping
k iterations leads to k erroneous entries in the output. Second
and in order to address this we propose an efficient low-
overhead mechanism to recover the value of these missing output
entries. Third, we show that due to the SIMD organization of
accelerators, perforation does not always translate to runtime
improvements. Our study shows that perforation can change the
memory coalescing behavior and negatively impact runtime. In
order to provide better insight we present workload characteris-
tics that benefit from perforation the most. Our evaluations using
a diverse set of benchmarks indicate that our proposed technique
can improve performance up to 93%, while maintaining the
quality loss at a rate below 10%.

Index Terms—Approximate Computing, GPGPU, OpenACC,
Loop perforation, CUDA.

I. INTRODUCTION

OpenMP and OpenACC are high-level programming mod-
els for executing parallel loops on accelerators. Using these
models, applications can run on accelerators by adding only
few directives to the code. Output parallelism is often used
in OpenACC applications where each iteration is assigned to
calculate one (or many) entry(s) in the output independently.
Our key observation is that consecutive iterations work on very
similar data and their output are very similar too. This leaves
an opportunity to use approximate computing and improve
efficiency. In this work, our key idea is to run few samples of
iterations and estimate the entire output based on these sam-
ples, instead of exhaustively running all iterations. A knob is
given to an OpenACC programmer to determine the sampling
rate. For example, for a loop with N parallel iterations and
sampling rate of 50%, N/2 iterations are executed to exactly
calculate half of the output, and this half is used to estimate
the rest of the output. We call this technique loop perforation,

TABLE I
SPEEDUP AND QUALITY LOSS UNDER NAIVE LOOP PERFORATION

(PERFORATION RATE OF 50%.)

Benchmark Speedup Quality loss
Backprop 16% 0.6%
BlackScholes 20% 34%
Fast Wal. Trsf. 27% 48%
Hotspot -20% 29%
Matrix Mult. 60% 50%
Median Flt. 48% 37%
Pathfinder -19% 98%
Sobel Flt. 97% 11%

named after a similar work on CPUs for serial applications
[9].

While a speedup proportional to the sampling rate is ex-
pected from perforation (over the baseline without perfora-
tion), we found that application type (e.g. compute-bound or
memory-bound) is also an important parameter in OpenACC.
For compute-bound applications, we observe that speedup
scales with perforation rate. However, for memory-bounded
applications, speedup depends on the memory pattern. For
example, if the memory pattern is irregular, we do observe
superlinear speedup and if the memory pattern is regular,
we observe insignificant sublinear speedup. As we throughly
investigate this behavior later in this paper, this is explained
by the organization of GPU-like accelerators.

While we generally see significant speedup from loop
perforation, the challenge is to maintain accuracy high based
on the output obtained from samples. In Table I we show
naively applying loop perforation, by just storing the output
from the samples at the corresponding entries and leaving
the rest of entries unassigned/empty, significantly ruins the
accuracy (for methodology refer to Section IV-A.) Our goal in
this paper is to address this accuracy challenge, while keeping
the speedup advantages high. We propose a very efficient
solution that does not increase the number of kernel launches
on accelerator and does not increase the number/size of
memory transfers between host and accelerator. Instead, in the
same kernel, a tiny fix-up code is attached to find unassigned
entries and then approximate values for them. The fix-up code
lookups neighbor entries for finding the unassigned entries and
approximates the values based on the values obtained for the
neighbors.

In summary, we make the following contributions:
• To the best of our knowledge, this is the first work

investigating use of loop perforation in OpenACC with



GPGPU backend.
• We show that loop perforation speedup in OpenACC does

not always scale well with perforation rate and highly
depends on the application characteristics. We evaluate
performance impacts of loop perforation under various
workload types and memory patterns.

• We introduce a very efficient solution to fix quality
loss caused by loop perforation, while maintaining the
performance advantages still high.

• We investigate our method under eight different Open-
ACC benchmarks and show loop perforation can deliver
up to 93% improvement in runtime, while the quality loss
remains below 10%.

The rest of this paper is organized as follows. In Section
II, we overview background. In Section III, we introduce
our extensions for OpenACC to perform loop perforation
and discuss techniques for maintaining the accuracy high
under perforation. In Section IV, we evaluate loop perforation
performance and accuracy. We discuss related issues in Section
V. In Section VI, we overview related work. Finally, in Section
VII we offer concluding remarks.

II. BACKGROUND

OpenACC is a directive-based API for parallelizing ap-
plications on accelerators (including GPUs, co-processors,
FPGAs, etc.) loop directive, for example, allows programmers
to explicitly specify parallelizable loops. Compiler reads this
hint and launches a kernel on the accelerator to execute each
iteration in parallel. For CUDA-like GPU accelerators, each
loop iteration runs as a CUDA thread. During the runtime,
threads are grouped into warps (32 threads) and executed in
lock-step. In this case, every consecutive 32 loop iterations are
executed by threads of one warp.

GPUs are highly optimized to execute warps. For example,
upon memory loads, if all threads of a warp request words
within a 128-byte memory line, accesses are coalesced and
only one memory access is made. Otherwise, if there is an
address divergence, requests are serialized and served one
unique 128-byte at a time. Address divergence imposes a
significant overhead since the load/store unit does not maintain
a request queue and the load instruction should be replayed
(decoded and issued again.) The load instruction is replayed
several times until all sides of address divergence send their
memory request (for worst case of 32 replays per warp instruc-
tion.) This replay occupies an issue slot from the instruction
scheduler/dispatcher, preventing the core from issuing new
instructions.

OpenACC applications have different memory access pat-
terns. In some applications, consecutive iterations of a loop
read/write consecutive words from an array. When a GPU
runs such applications, threads of a warp read consecutive
words from memory. This pattern is GPU-friendly and called
regular pattern or well-coalesced. In some other applications,
consecutive iterations of a loop read/write arbitrary words
from an array. Running such applications on GPUs potentially

causes address divergence. We refer to this as irregular mem-
ory access pattern.

III. PROPOSED CLAUSE

In this Section we propose a clause, named perforation,
to allow loop perforation in OpenACC. The clause is added
to loop directive and applies to the corresponding parallel
loop. Compiler’s parser reads the clause and performs loop
perforation on parallel loops.

A. Notation

perforation clause is defined by the following notation:
perforation(rate)

where rate specifies the percentage of the loop iterations that
are perforated. For example, perforation(0.2) denotes 20% of
the loop iterations are dropped and 80% run. The dropped
iterations are picked uniformly from original range of the
loop. For example, if perforation rate is 20%, from every five
consecutive iterations one and only one should be dropped.

B. Examples

Listing 1 presents an example of perforation clause usage.
Without using perforation clause, code adds a and b vectors
and stores the results in c. Including perforation clause with
parameter 0.3 hints the compiler to drop 30% of the loop
iterations. In this case, 30% of the iterations do not run and, for
this kernel, 30% of entries in c remain unassigned/unchanged.
Next subsection explains a mechanism to approximate values
of these entries.

Listing 1. Perforated vector-vector add in OpenACC.
#pragma acc parallel copy(a,b,c)
#pragma acc loop perforation (0.3)
for ( i=0; i<length ; ++i){

c[ i ] = a[ i ] + b[ i ];
}

C. Fix-up Code

As explained earlier, loop perforation leaves portion of
output entries unassigned. Fix-up is our solution to efficiently
approximate values for these entries. Our solution does not
launch an extra kernel nor impose extra memory transfers
between host and device. Instead, within the same kernel, fix-
up code first finds unassigned entries and then approximates
their values. Below we explain each step.

Finding unassigned entries: Unassigned entries corre-
spond to iterations that are perforated (not executed.) To
find unassigned entries, it is enough to find the perforated
iterations. Perforated iterations can be found simply by know-
ing that consecutive threads should have been mapped to
consecutive loop iterations, unless one or more iteration is
dropped in between. Based on this fact, fix-up generates a
code for each thread to calculate the loop iteration that is
assigned to the next thread. If the iteration (that is assigned to
the next thread) is immediately after the iteration assigned to
this thread, there is no perforated iteration between this thread



and the next thread. Otherwise, one or more iterations have
been perforated. The thread that detects this takes over the
task of the perforated loop iteration(s) and approximates the
values for corresponding output entries. We refer to this thread
as take-over thread.

Approximating the value: Take-over thread has already
computed the loop iteration that is assigned to it (computed
values are in the registers and cache) and is going to ap-
proximate the values for the perforated loop iteration(s). We
evaluate several approximation methods for achieving the best
accuracy. The thread can simply copy the value that has
obtained for its entries to the perforated entries. As we present
later in the results, this approach broadly recovers the quality
loss. We refer to this method as fix-copy. Other methods are
based on reducing the values obtained from this thread with
the values obtained by neighbor threads (corresponding to the
neighbor entries.) To lower down the communication over-
head, we limit the thread to use the output from two neighbors
only (the threads before and after this thread.1) Therefore,
the thread has three values (one from itself and two from
neighbors) to approximate the perforated entry. One method
is to assign the average of three values to the perforated
entry, referred to as fix-avg. Similar methods are assigning
the minimum or maximum of three values to the perforated
entries, referred to as fix-min and fix-max, respectively.

D. Implementation

OpenACC applications can be translated to CUDA or
OpenCL to be able to run on accelerators. Here we dis-
cuss implementing perforation clause in CUDA backend of
OpenACC. We implement perforation clause by modifying
following two code blocks:

Kernel launch parameters: Number of threads are lowered
down by the perforation rate. For instance, if originally there
are N loop iterations and perforation rate is 50%, N/2 threads
are launched on the accelerator.

Mapping of CUDA threads to loop iterations: In original
code, every loop iteration is mapped to a single CUDA thread.
With perforation, every thread still runs single loop iteration
but there are lower number of threads than loop iterations
(this is where iterations are dropped.) The mapping of CUDA
threads to loop iterations are modified to distribute the dropped
iterations uniformly within the loop’s range. For example, if
the loop increment is ++, −−, + = 1, or − = 1, the loop
iterations that are assigned to each thread are multiplied by

1

1− PerforationRate
(referred to as expansion rate.) This

distributes threads along the loop’s range uniformly. Expansion
rate formula depends on the loop increment and can be coded
in the compiler statically for set of predefined operators (e.g.
∗ = and \ =.)

1Communications among neighbor threads is implemented efficiently using
CUDA warp register exchange instructions which is as fast as register move.

TABLE II
SPECIFICATIONS OF THE BENCHMARKS.

Benchmark Suite # loops # iterations Quality
Backprop Rodinia 3/5 1048576 Avg. Rel. Err
BlackScholes PARSEC 1/1 10000128 Avg. Rel. Err
Fast Wal. Trsf. SDK 1/1 2097152 Avg. Rel. Err
Hotspot Rodinia 1/2 1048576 Avg. Rel. Err
Matrix Mult. SDK 1/2 4194304 Avg. Rel. Err
Median Flt. IPMACC 1/2 3145728 N. RMSE
Pathfinder Rodinia 1/1 4194304 Avg. Rel. Err
Sobel Flt. IPMACC 1/2 3145728 N. RMSE

IV. EXPERIMENTAL RESULTS

A. Methodology

Compiler. We use our in-house framework for implement-
ing perforation clause and compiling OpenACC applications.
The framework is publicly available at [2]. Our framework
translates OpenACC source codes to CUDA sources and then
uses GNU GCC and NVIDIA nvcc compilers for generating
host and device binaries. We use GNU GCC 4.9.3 and
NVIDIA nvcc 8.0.

Benchmarks. We modified serial implementations of the
benchmarks available in Rodinia Benchmark Suite, PARSEC,
and NVIDIA GPU Computing SDK to form our benchmark
set. We also included median and sobel filters from image
processing domain. Initially, we modified the benchmarks to
implement OpenACC version. We call this version original
OpenACC in evaluations. This version runs on the GPU and
produces the exact same result as the serial version. On top of
the original OpenACC version, we added perforation clause to
loop directives to create perforated OpenACC version of the
benchmarks. In perforated version a portion of iterations are
dropped, based on the perforation rate compile-time parame-
ter. In evaluations, we compare perforated OpenACC version
to original OpenACC and report execution time advantages
and impacts on the quality of results, under various perfo-
ration rates. For execution time, we only report the kernel
time, measured through NVIDIA nvprof. Table II lists the
quality assessment scheme used for each benchmark. Quality
column indicates the method for measuring the error: average
relative error or normalized root-mean-square error. loops
column reports the number of parallel loops perforated versus
total parallel loops. In benchmarks with nested parallel loops
(that includes all except BlackScholes, Fast Wal. Trsf., and
Pathfinder), we only applied perforation to the most inner loop.
iterations column reports the maximum number of parallel
loop iterations.

Hardware. We run our evaluations on NVIDIA Tesla K20
GPU. The GPU has 13 Streaming Multiprocessors. Each mul-
tiprocessor has 192 CUDA cores and supports 2048 threads.
Threads are scheduled for execution at warp (group of 32
threads) granularity.

B. Performance Analysis

To investigate the impact of application type on loop perfo-
ration’s speedup, we evaluated the technique under three typ-
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Fig. 1. Perforation performance potential under various workload types.

ical application types: i) compute-bound (involves numerous
ALU/FPU operations per iteration), ii) memory-bound regular-
pattern (numerous memory reads performed per iteration,
where consecutive iterations read words in the same cache
line), iii) memory-bound irregular-pattern (numerous memory
reads performed per iteration, where consecutive iterations
read words from different cache lines.) Figure 1 reports the
speedup under these application types for perforation rate of
50%, expecting 2X speedup. As reported in 1a, we start to
observe speedup from perforation as the number of iterations
and ALU/FPU ops increase. This is where ALU/FPU ops time
starts to dominates the kernel launch time. For fairly large
number of iterations and ALU/FPU ops per iterations, we
observe roughly 2X speedup. As reported in 1b, speedup is not
significant under memory-bound with regular memory access
pattern. This is explained by the overhead of memory address
divergence imposed by perforation. In the baseline, consec-
utive iterations access consecutive words in the same cache
line. Under perforation, however, consecutive iterations are not
necessarily reading words from the same line. This generates
address divergence that increases instruction replay overhead
[11] and the pressure on memory subsystem. This overhead
ruins the advantages of loop perforation and lowers down the
speedup significantly, caps at 5% when there are high number
of iterations and loads per iteration. For the third application
type, as reported in 1c, we observe superlinear speedup. In this
type, every iteration loads one (up to 64) unique word(s) from
one (up to 64) unique cache line(s), modeling irregular high-
demanding memory pattern. Reducing the number of iterations
through perforation yields significant speedup as this drops the
memory subsystem’s demand dramatically. Notice that here,
in contrast to the case in memory-bound with regular pattern,
address divergence will not be exacerbated by perforation. This
is because the address divergence under irregular pattern is the
worst case; 32 threads of the warp are fetching 32 different
cache lines.

C. Benchmarks

Figure 2 to 5 present speedup versus accuracy trade-off
under loop perforation, for various perforation rates and fix-up
methods. We evaluated four different fix-up methods: fix-copy,
fix-avg, fix-max, and fix-min2. Overall, all methods have very
close speedup, but they differ in term of accuracy. For each
benchmark, numbers are normalized to original OpenACC
(perforation rate of 0.0). Speedup is significant for kernels
with significant computations or irregular memory access
patterns (e.g. Matrix Mult.) Otherwise, if the kernel has trivial
amount of computations and memory accesses are regular
and well-coalesced, perforation is not effective in improving
performance (e.g. Hotspot and Pathfinder.) Below we explain
each benchmark, separately.

1) Backprop.: This application implements backpropaga-
tion neural network training algorithm. There are three kernels
and perforation is applied to all. The kernels’ code is mostly
composed of calculating the sum product of two arrays. Cal-
culating the sum product is a serial iterative task. Perforation
skips this serial calculation altogether and this is where the
main speedup of perforation comes from. On the negative
side, all memory accesses are regular and well-coalesced.
Perforation ruins the regular access patterns and this mitigates
the overall speedup. Perforation delivers 7% speedup under
perforation rate of 0.5 (50%). Quality loss in this application
is very insignificant under all fix-up methods.

2) BlackScholes.: The kernel code is composed of huge
computations and eight memory accesses (seven loads and
one store), where all memory accesses are well-coalesced. All
memory accesses read elements of 4-byte floating-point data
type. Without perforation, consecutive iterations read/write
consecutive 4-byte elements. Assuming 128-byte memory
transactions, every time a warp executes a load/store oper-
ation, warp’s 32 threads access one consecutive 128 bytes
(32 × 4 bytes.) Applying perforation deteriorates memory

2Note that quality loss and performance improvement from loop perforation
without any fix-up code is reported earlier in Table I.
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Fig. 2. Comparing speedup versus quality loss of perforated OpenACC over the baseline, under different perforation rates. fix-copy perforation fix-up is
applied.
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Fig. 3. Comparing speedup versus quality loss of perforated OpenACC over the baseline, under different perforation rates. fix-avg perforation fix-up is applied.

access coalescing and debilitates the speedup. For instance,
perforation rate of 0.5 drops one iteration from every two
iterations and doubles the memory bandwidth requirements of
a warp (since two 128-byte transactions are made.) This causes
address divergence within a warp and slowdowns the perfor-
mance. Perforation’s performance is boosted through reduction
in computations of the kernel though. Overall, perforation
boosts the performance through reduction in computations
and slowdowns the performance by deteriorating the regular
memory access pattern. Aggregating impacts on both sides,
we observe tangible speedup for perforation rate of > 0.2, up
to 29% under perforation rate of 0.5. Among different fix-up
methods, fix-min is the most effective heuristic to recover the
quality loss (Figure 5.) For perforation rate of 0.5, fix-min
keeps the quality loss at 27%.

3) Fast Wal. Trsf.: The kernel code is composed of one
XOR, one MAD, and three memory accesses (two loads and
one store), where one of the loads is of irregular pattern and
the rest are regular. Here the only opportunity for perfora-
tion to improve performance is to lower down the overhead

of irregular memory accesses (no opportunity in tiny-scale
computations nor regular memory accesses.) Perforation drops
portion of iterations and avoids making irregular memory
fetches and lowers down the pressure on memory subsystem.
Speedup from perforation can be seen for perforation rate
of > 0.1. For perforation rate below this range, perforation
slowdowns. This can be explained by the negative impact of
perforation on two regular memory accesses of this kernel (one
load and one store.) These two accesses are well-coalesced and
this pattern is ruined under perforation. Overall, 27% speedup
is observed under perforation rate of 0.5. fix-max and fix-copy
methods are very effective in recovering the quality loss in this
benchmark, below 2% under perforation rate of < 0.5.

4) Hotspot.: The kernel code is composed of small number
of ALU/FPU operations and 10 4-byte memory accesses (nine
float loads and one float store), where all memory accesses are
well-coalesced. There is no opportunity for perforation to im-
prove performance in this kernel (tiny-scale computations and
regular memory accesses.) Applying perforation deteriorates
the regular memory access patterns of 10 memory accesses
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Fig. 4. Comparing speedup versus quality loss of perforated OpenACC over the baseline, under different perforation rates. fix-max perforation fix-up is
applied.
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Fig. 5. Comparing speedup versus quality loss of perforated OpenACC over the baseline, under different perforation rates. fix-min perforation fix-up is
applied.

and significantly lowers the performance. In this benchmark,
the output is a 2D matrix representing the temperature of a
processor chip. The kernel is called hundreds of time and
each kernel calculates temperature variations in a time step.
Intrinsically, neighbor elements of the matrix have very close
values at the end (thermal conduction gradually equalizes the
temperature of neighbors particles.) This explains why fix-
copy recovers the quality loss dramatically keeping the quality
loss below 1%. Also, the simulation starts at the point where
elements have a low temperature and gradually grow to a large
number. fix-max captures this trend and delivers very high
accuracy (while fix-min opposes this trend and delivers a very
low-quality approximation.)

5) Matrix Mult.: The kernel code is composed of a serial
loop iterating through two arrays, one column-wise (regular
pattern) and the other row-wise (irregular pattern), to calculate
the sum-product of two vectors. The serial loop iterates
for 2048 times, generating 1024 regular and 1024 irregular
memory accesses. This, on the positive side, leaves a huge

room for perforation to improve performance by minimizing
irregular memory accesses. On the negative side, perforation
deteriorates pattern of irregular memory accesses. Aggregating
the impacts from two sides, perforation delivers speedup of
11% to 60% under perforation rates of 0.2 to 0.5. In Matrix
Mult., the quality of the output highly depends on the input.
Under every input, however, a row is multiplied by a column to
find a single entry in the output. Two consecutive columns of
a row work on the same row, but different columns, implying
that 50% of the input is the same. This explains why fix-
copy has a very high accuracy, below 1% quality loss under
perforation rate of < 0.5.

6) Median Flt.: The kernel code is composed of huge
computations and 11 memory accesses (7 loads and 4 stores),
where all memory accesses are regular. Although the op-
portunity for increasing the performance through minimizing
memory demand via perforation is not possible, but there is
a significant opportunity in improving performance through
lowering down the computations. Computations involve sort-



ing a nine-element array, 27 modulus operations, 27 divisions,
and hundreds of additions, subtractions, and multiplies. Storing
the array, modulus and divisions are expensive operations.
Perforation improves performance by lowering down the
computational demand. Perforation overhead for deteriorating
memory access pattern is not significant since the memory
requests are of char type (1 byte per element). For 1 byte data
type, grouping well-coalesced accesses from 32 threads of a
warp demands 32 bytes. Although each warp load demands 32
bytes, SM reads 128 bytes from global memory (since memory
transaction size in this GPU (Kepler K20) is 128 bytes.)
Therefore, as long as perforation rate is < 0.75, no extra
address divergence will be exposed by perforation (0.75 means
dropping 3 of every 4 iterations, quadrupling the memory
demand of regular memory accesses.) Overall, perforation
delivers 5% to 48% speedup under perforation rates of 0.1
to 0.5. For the input matrices, we tried different combinations
of Hilbert, Lehmer, and Redheffer matrices and observed very
similar results. Among the fix-up methods, fix-copy and fix-
max deliver very high accuracy. In images, neighbor pixels
generally have a very close intensity. This is why fix-copy
works well for recovering the quality loss.

7) Pathfinder.: The kernel code is composed of six ALU
operations and five memory accesses (4 loads and 1 store),
where all memory accesses are regular. Applying perforation
doubles memory address divergence and, since there is no
performance advantages from lowering down the computation
side of the kernel, all the address divergence translates to
performance slowdown. Pathfinder is an iterative benchmarks
running a single kernel hundreds of times. Numerous itera-
tions of the kernel propagates the error across entire entries
and, regardless of perforation rate, quality loss is significant.
Among different fix-up methods, fix-copy performs the best
in term of accuracy, keeping the quality loss below 14%.

8) Sobel Flt.: The kernel code is composed of a hundred of
ALU and control-flow operations and seven memory accesses
(5 loads and 1 store), where all memory accesses are of
regular pattern. Perforation delivers significant speedup in this
benchmark by lowering the computations of the application.
While the memory accesses are well-coalesced, perforation
does not increase the memory demand, since the data type
is 1-byte (refer to the explanations of Median Flt. above for
discussions on this.) All fix-up methods work very well in
lowering down the quality loss. In Sobel Flt., most of the
output entries are zero, which is equal to not assigning any
values to the output. This is why even applying no fix-up
method, as reported in Table I, delivers acceptable quality loss.
Also this output is image, and images exhibit very high data
similarity around neighbor pixels in general.

V. DISCUSSION

Auto-tunning. Our proposal relies on the programmer to
set the perforation rate to a number that produces reasonable
results. We believe this is not challenging for OpenACC pro-
grammer since only one single parameter should be adjusted
in our proposal and the optimal value of this parameter can

be found in linear time. However, to offload this task from
programmer, profiling approaches similar to [6] and [9] can
be used.

Load balancing. Most accelerators (e.g. GPUs) run a group
of threads (or loop iterations) together over the SIMD (referred
to as warp). If there is a load imbalance among the thread
group, one of the threads might run longer while others are
done. This drops SIMD utilization and degrades performance.
If loop iterations have different runtime (duration), loop per-
foration impacts load balancing. In the benchmarks that we
investigated here, we did not observe load imbalance after
loop perforation. We leave further investigation on this issue
to future work.

VI. RELATED WORK

Mittal [3] presents a survey of approximate computing
techniques, programming frameworks for approximate com-
puting, and techniques for using approximate computing in
various computing platforms and memory technologies. Below
we overview language extensions, loop perforation, directive-
based, and GPU-related approximate computing techniques.

A. Language Extensions

Sampson et al. [7] propose ACCEPT compiler for approxi-
mate computing. ACCEPT compiler reads approximation hints
(C/C++ type qualifiers) from the programmer and also includes
compiler passes to identify approximable codes. In practice,
the programmer hints in the code initiate approximate com-
puting and compiler passes explore the applications dataflow
afterwards and suggest more approximation opportunities.
Then the programmer inspects compiler analysis and injects
more hints. This feedback loop effectively allows spanning
approximate computing across the code step by step. Also
various relaxation methods from literature has been integrated
in the framework. An autotuner is proposed to heuristically
explore the space of possible relaxed programs to identify
Pareto-optimal variants.

Park et al. [4] propose a small set of language extensions
for practical approximate computing in Java. FlexJava com-
piler automatically infers approximable operations and data
from the original programmer hints and selectively includes
them in approximation. FlexJava promises more efficient and
productive approximate computing extensions than previous
work [8].

B. Loop Perforation

Our work is different from the loop perforation technique
proposed by [9] in two ways. Firstly, while the technique
proposed in [9] does not compensate for perforated loop
iterations, our approach runs a tiny post-kernel fix-up code to
compensate for these iterations. Secondly, the technique pro-
posed in [9] considers all loops as candidates for perforation.
This will unmanageably grows the size of optimization space
and requires auto-tunning to consider interaction between per-
forated loops and finding the optimal configuration. Our work,
however, is applied to a subset of loops (parallel loops). This



keeps the interaction between perforated loops manageable
and a programmer can tune the parameters through directives,
with an insignificant development effort. In summary, our work
is tailored to output-parallelized directive-based parallel APIs
like OpenACC.

C. Directive-based Techniques

Rahimi et al. [5] propose two new OpenMP directive, re-
ferred to as the accurate and approximate directives. Directives
allow programmers to annotate a code block for accurate or
approximate computing. The difference between accurate and
approximate code blocks is that the floating point instructions
in an approximate code block are executed on energy-efficient
less-precise floating point unit (FPU) in the hardware. The
proposed directive trades accuracy for energy-efficiency and
requires compiler and hardware support to achieve this. To
bound the quality loss, they provide a knob to programmer to
specify the floating point precision requirements. This hint is
passed to the compiler through a clause in the approximate
directive.

Vassiliadis et al. [10] propose a directive-based extension for
OpenMP task model to trade accuracy for energy-efficiency.
In practice, the programmer submits numerous tasks and
configures a significance parameter for each task. Significance
ranges from 0.0 to 1.0, where 1.0 means the task should be
executed accurately and 0.0 means the task can tolerate ap-
proximation. Based on the the significance recorded per task,
runtime system schedules the tasks in the goal of delivering
best energy-efficiency through approximate computing.

D. GPU-based Techniques

Figurnov et al. [1] propose a novel approach to address
computational complexity of convolutional neural networks.
They propose to trade accuracy for performance and speedup
convolutional layers by skipping their evaluations when there
is a strong spacial locality. They evaluate their proposal under
both CPU and GPU and show that this approach provides 2-
4.2X speedup, at the cost of up to 9.9% of error.

Yazdanbakhsh et al. [12] investigate opportunity to replace
segments of GPU kernels with neural approximation. First,
they show that on average, 58% of the runtime is spent
in approximable segments. Based on this strong potential
for neural approximation of GPU kernels, they introduce
modifications to GPU architecture to implement an efficient
neural accelerator using GPU cores. Their evaluations show
that GPU+DNA (GPU plus neural accelerator) architecture
achieves 1.9X speedup over the baseline GPU architecture in
executing GPU kernels.

Our work is different from Paraprox [6] in two ways. Firstly,
Paraprox replaces the original kernel with an approximate
kernel, running the same number of threads. This will impact
all results since the running kernel is different. Our work,
however, runs the exact same kernel but on lower number
of threads. Our work accurately calculates a subset of outputs
by lower number of threads and approximates the remaining
outputs from the calculated set. Secondly, Paraprox requires

a profiling phase to configure the parameters of approximated
kernel while our proposal relies on the rate parameter adjusted
by the programmer.

VII. CONCLUSION

In this work we evaluated a directive-base technique in
OpenACC for approximate computing. The technique shrinks
the complexity of the task by an adjustable rate to obtain
samples of the output. From these samples, a large portion of
output is approximated with very high accuracy. In our tech-
nique, a programmer uses the adjustable rate as a knob to trade
output quality for performance. We also investigated the type
of applications that can benefit from perforation. Compute-
intensive applications as well as memory-intensive applica-
tions with irregular-pattern can take advantage of perforation
and boost performance. On the other side, perforation has
sublinear speedup impact on applications with regular memory
pattern. Investigating synthetic and real benchmarks, we found
the technique very effective in improving performance, at a
reasonable quality loss.
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