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Abstract 

GPUs can execute up to one TFLOPs at their peak performance. This 

peak performance, however, is rarely reached as a result of resource 

underutilization. Three parameters contribute to this inefficiency: branch 

divergence, memory access delays and limited workload parallelism. To this 

end we suggest machine models to estimate performance gain potentials 

obtainable by eliminating each performance degrading parameter. Such 

estimates indicate how much improvement designers could expect by investing 

in different GPU subsections. Moreover, our models show how much 

performance is lost compared to an ideal GPU as a result of non-ideal GPU 

components. We conclude that memory is by far the most important parameter 

among the three issues impacting performance. We show that in the presence 

of an ideal memory system, GPU performance can reach within 59% of an 

ideal system. Meantime, using an ideal control-flow mechanism or unlimited 

execution resources does not come with the same impact. In fact, as we show 

in this study, an ideal control-flow could harm performance as the result of 

increasing pressure on the memory system.   

In addition, we study our models under GPUs exploiting aggressive 

memory systems and well-equipped Stream Multiprocessors. We investigate 

how previously suggested control-flow solutions impact performance-

degrading issues and make recommendation to enhance control-flow 

mechanisms. 

 

1. INTRODUCTION 

Graphics processing units (GPUs) are used as accelerators for 

general-purpose throughput-intensive workloads in high performance 

computing. Modern GPUs are capable of reaching peak processing 

power of one TFLOPS for single-precision operations and 500 

GFLOPS for double-precision operations in just a single chip [1]. In 

addition to this dense processing capability, GPUs come with little 

power dissipation providing further motivation for deploying them in 

computers in order to maximize performance per cost [4]. 

One of the major concerns of GPU designers is the 

underutilization of GPU’s computational resources during execution 

of general-purpose applications [2]. General-purpose applications are 

divided into memory-intensive and computation-intensive classes.  

Memory-intensive applications underutilize GPU resources 

mainly as the result of high pressure on the memory. The pressure 

can increase under unpredictable memory access patterns [12]. While 

GPU’s typical memory bandwidth is about 5x higher than CPUs [10], 

GPUs are restricted by the fact that their bandwidth is shared among 

thousands of threads [14]. This limitation does not appear as serious 

for graphical workloads since in such workloads, threads share large 

data sets [3]. Consequently, GPUs are capable of providing the 

required bandwidth for graphical applications [13]. 

Computation-intensive applications underutilize GPU resources 

often as a result of frequent occurrence of branch instructions [12, 

15]. In contrast to conventional graphical computations, general-

purpose workloads typically include a high number of branch 

instructions [11]. GPUs execute groups of threads in lock-step. All 

the threads that belong to the same group (also referred to as warps) 

execute the same instruction but use different data (an SIMD-like 

model referred to as SIMT by NVIDIA [3]). Lock-step execution is 

violated if the branch instruction diverges, dividing the warp into two 

sub-groups with different program counters [7].  This can impact 

performance negatively. Current GPUs use masking and re-

convergence [9] to address this issue.  

There have been many studies at different levels to address 

resource underutilization in GPUs. These studies could be 

categorized into memory solutions and control-flow mechanism 

solutions. Memory solutions aim at either reducing or hiding memory 

latency. Control-flow solutions reduce the impact of branch 

divergence by regrouping the threads into new warps. 

On-chip last-level shared caches [16] are commonly used to 

reduce average memory latency. On the off-chip side, DRAM 

scheduling policy can also impact memory latency [19, 20]. Hiding 

memory latency generally is effectively feasible under higher number 

of concurrent threads. In the absence of high concurrency, it is 

possible to diverge the warp and let the hit-threads (threads that hit in 

the cache) continue [17], hiding the latency of miss-threads. 

Basic control-flow mechanisms divide warps into independently 

schedulable warps on every diverging branch instructions. Over-

divergence occurs when these divided warps experience a diverging 

branch again. Stack-based reconvergence mechanisms prevent over-

divergence of a warp with thread-masking and reconvergence [9]. 

Other studies have used dynamic warps to keep all threads active and 

avoid temporal inactivation due to thread-masking. Fung et al. [7] 

suggested dynamically reconstructing the warps to keep threads of 

the same diverging path in the same warp. Meng et al. [8] suggested 

splitting the warp into independently schedulable warp-splits. 

However, unlike [9] and [7], this mechanism reconverges these warp-

splits after execution of the diverging paths and revives the original 

warp. 

Our study shows that greedy control-flow mechanisms aiming at 

maximizing computational resource utilization harm coalescing 

memory accesses [3] and increase pressure on off-chip memory 

significantly. 
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Figure 1. Stream Multiprocessor shares CTA limiting resources (thread 

pool, register file and shared memory) between concurrent CTAs. 

In addition to memory and branch divergence, the third parameter 

impacting performance in GPUs is the available Streaming 

Multiprocessor (SM) resources, which could limit the number of 

concurrent Cooperative Thread Arrays (CTAs) for highly parallel 

applications. An increase in such resources would benefit 

applications that come with enough parallelization.   

 Finding new and balanced solutions to facilitate better usage of 

GPUs requires a deep understanding of current obstacles and their 

impact on previously suggested solutions. Therefore in this work we 

study the impact of branch divergence, memory and execution 

resource limitations on GPUs.  

In summary we make the following contributions: 

• We develop a set of machine models to show how much 

speedup can be reached when each one of GPUs’ 

performance-impacting parameters is idealized. Moreover, we 

compare our models to an ideal machine to show how each 

parameter can impact an otherwise ideal GPU. 

• We show that while improving any of the three performance-

impacting parameters can enhance performance, it is the 

memory that has the greatest impact. We also show that an 

ideal memory system can improve performance and reduce 

the impact of other parameters. 

• We explore abnormal trends in our results. In particular we 

show how and why a non-ideal control-flow solution can 

outperform an ideal control-flow mechanism as the result of 

memory load variations.  

• We introduce machine models to investigate how different 

practical limitations distance us from peak and ideal 

performance. We show that peak performance is highly 

sensitive to memory performance and less dependent on per 

SM resources and control-flow behavior.  

• We explore whether our findings remain valid under changes 

in GPU configurations and possible technology trends. 

The rest of this paper is organized as follows. In Section 2 we 

review background. In Section 3 we discuss our methodology.  In 

Section 4 we present and evaluate the machine models used in this 

work. In Section 5 we study sensitivity analysis and investigate 

whether our findings stay valid for alternative GPU configurations.  

 

2. BACKGROUND 

GPUs are built of hundreds of processing elements (PE). Each 

cluster of PEs sharing resources is an SM. Scalable arrays of SMs are 

connected to memory controllers through an interconnection 

network. As shown in Figure 1, an SM has a thread pool, which 

stores the status (no context) of outstanding threads. The pool is 

shared among CTAs. 

A group of threads (referred to as a warp) are executed on an SM 

concurrently. The fetch and decode stages of the pipeline in each SM 

are shared among all threads of the warp. The pipeline’s execution 

bandwidth at Register Read and Execution stages is the SIMD width 

and depends on the number of PEs per SM. Sharing the simple fetch 

and decode stages of this in-order pipeline facilitates providing 

enough chip area for hundreds of PEs. 

In conventional GPUs a warp executes the same instruction from 

different threads concurrently. Meantime threads are allowed to 

diverge and execute different instructions. Conditional branch 

instructions, however, can cause the warp to diverge (known as the 

branch divergence hazard) resulting in inefficient resource utilization. 

Control-flow mechanisms are required to remove or reduce the cost 

associated with this hazard. In this work we study GPUs using two 

well-known control-flow mechanisms, i.e. postdominator 

reconvergence (PDOM) and dynamic warp formulation (DWF).  

PDOM, which is used in GPUs such as NVIDIA G80[3], relies 

on static warp formulation. Individual threads that construct a warp 

do not change during threads’ lifetime. Placement of the threads in a 

warp depends on their inter CTA unique id (TID in CUDA 

terminology [2].) PDOM uses round-robin to issue the next warp to 

the pipeline. PDOM uses masking to deal with branch divergence. 

Masking stores multiple program counters (PC) per warp. The mask 

vector for each PC represents threads associated with the PC. During 

executing an instruction with a particular PC, the mask temporarily 

inactivates the threads not associated with the PC. PDOM uses a 

stack per warp to prevent over-divergence and to guarantee that 

vector masks associated with the same PC will eventually merge. 

This is done by using additional information (reconvergence point) 

passed to branch instruction [7]. 

PDOM comes with the advantage of guaranteeing to execute top-

level basic blocks (starting with reconvergence points) with 

maximum SIMD utilization. Memory accesses belonging to threads 

with close TIDs are usually performed in the same SM. PDOM 

benefits from this locality as it places close TIDs in the same warp 

and coalesces their memory accesses whenever possible. Meantime, 

PDOM shows poor performance in the presence of large number of 

instructions in divergent paths. Another PDOM disadvantage is due 

to the fact that masking and inactivating threads results in avoiding 

execution of threads that may be ready and if executed can 

potentially hide the latency of memory accesses.  

The idea behind DWF is to merge the warps with the same 

divergent path to maintain high utilization under SIMD. DWF cannot 

reach this goal unless enough warps with the same divergent path 

exist. 

Since a thread may be scheduled in different warps under DWF, 

DWF uses lane aware scheduling and preserves SIMD lane of the 

thread in any warp. Lane aware scheduling uses the original 
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Table 2. Benchmarks Characteristics: BR, TR and CC present branch instruction 

frequency, the share of taken branches and maximum allowed CTAs per SM, 

respectively. 
Name Abbr. Grid Size CTA Size #Insn BR(%) TR(%) CC(%) 

Back 

Propag[21] 
BKP 2x(1,64,1) 2x(16,16,1) 2.9M 7 74 4 

BFS 

Graph[21] 
BFS 16x(8,1,1) 16x(512,1,1) 1.4M 13 51 4 

Needle[21] NW 

2x(1,1,1) 

2x(2,1,1) 

… 

2x(31,1,1) 

(32,1,1) 

63x(16,1,1) 12.9M 11 72 7 

NN_cuda[21] NN 4x(938,1,1) 4x(16,16,1) 5.9M 8 75 8 

Hotspot[21] HSPT (43,43,1) (16,16,1) 76.2M 8 17 2 

Dyn_Proc[21] DYNP 13x(35,1,1) 13x(256,1,1) 64M 7 27 4 

Scan[23] SCN (64,1,1) (256,1,1) 3.6M 18 80 4 

Coulumb 

Potential[22] 
CP (8,32,1) (16,8,1) 113M 6 99 8 

Fast 

Walsh 

Transform[23] 

FWT 

6x(32,1,1) 

3x(16,1,1) 

(128,1,1) 

7x(256,1,1) 

3x(512,1,1) 
11.1M 5 49 4,2 

Gaussian[22] GAS 48x(3,3,1) 48x(16,16,1) 8.2M 4 66 4 

Matrix 

Mul[23] 
MTM (5,8,1) (16,16,1) 2.4M 2 60 4 

Srad[21] SRAD 3x(8,8,1) 3x(16,16,1) 9.1M 6 94 2,3 

StoreGPU[22] STO (128,1,1) (256,1,1) 60.5M 1 76 1 

 

Table 1. Baseline configurations. 

Parameter Value 

NoC 

Total Number of SMs 30 

Number of Memory Ctrls 6 

Number of SM Sharing an 

Interconnect 
3 

SM 

Warp Size 32 Threads 

Number of Thread per SM 1024 

Number of Register per SM 16384 32-bit 

Number of PEs per SM 32 

Shared Memory Size 16KB 

L1 Data Cache 64KB:8-way:64BytePerBlock 

L1 Texture Cache 8KB:2-way:64BytePerBlock 

L1 Constant Cache 8KB:2-way:64BytePerBlock 

Clocking 

Core Clock 325 MHz 

Interconnect Clock 650 MHz 

DRAM memory Clock 800MHz 

Memory 

Number of Banks Per Memory Ctrls 8 

DRAM Scheduling Queue Size 32 

DRAM Scheduling Policy Fast Ideal Scheduler 

GDDR3 Memory Timing 
tRRD=12, tRCD=21, tRAS=13, 

tRP=34, tRC=9, tCL=10 

Control-Flow Mechanisms 

Base DWF issue heuristic Majority 

PDOM warp scheduling round-robin 

 

placement of the thread in its original warp to avoid extra register 

back conflict [2,7] during Register Read stage. 

DWF’s performance is highly sensitive to the warp-issue policy 

(referred to as issue heuristic).  An effective issue heuristic should 

execute all threads of a CTA at the same pace. Greedy issue 

heuristics can starve low-priority threads. Consequently, when 

starved threads are finally scheduled for execution, they may not be 

able to fill the SIMD width resulting in huge performance drop, 

referred to as starvation eddies [6]. In this work we assume the 

majority issue heuristic [7] as it outperforms other issue heuristics in 

DWF. 

DWF, on the other hand, does not mask any threads and ready 

threads are always active. Meantime, DWF cannot guarantee 

execution with maximum SIMD utilization for any basic block as it 

does not consider reconvergence points.  

 

3. METHODOLOGY 

We modified GPGPU-sim (version 2.1.1b) to simulate and 

evaluate our models. We configured GPGPU-sim to model 

NVIDIA’s Quadro FX5800 with L1 cache for Constant, Texture and 

Data memories. We assumed 32 PEs per SM (instead of 8 PEs per 

SM used in conventional GPUs such as FX5800) to model memory 

access coalescing more effectively. Meantime, we reduced SM clock 

rate down to 1/4 to reduce the impact of the extra pressure on off-

chip DRAM caused by the four times higher number of PEs per SM. 

Table 1 shows our baseline configuration.  

We included benchmarks from Rodinia[21], CUDA SDK 2.3[23] 

and benchmarks used in[22]. We use benchmarks exhibiting different 

behaviors: memory-intensiveness, compute-intensiveness, high and 

low branch divergence occurrence and with both large and small 

number of CTAs. We exclude some benchmarks due to compilation 

and runtime problems. Table 2 shows benchmark characteristics for 

the applications used in this study.  

Note that the number of concurrent CTAs per SM is limited by 

how effectively SM resources are utilized by benchmarks. In Table 2, 

CC shows the number of CTAs that can be executed concurrently on 

an SM in each benchmark. For a specific kernel, this number is 

limited by the size of following resources: thread pool size, shared 

memory and register file.  

In this work we report performance as measure by IPC 

(Instruction per Clock). GPUs are high-throughput architectures; 

therefore an alternative way to measure performance is to report 

Ops/s (Operations per Second). We do not report Ops/s in the interest 

of space.   

4. MACHINE MODELS 

According to CUDA Programming Guides [2], three parameters 

impact performance in GPUs: 

- Workload Parallelism: In order to achieve high performance, 

workloads should have enough parallelism to potentially utilize 

GPU’s computational resources. In workloads launching just a single 

kernel, the kernel should have enough CTAs to utilize all available 

SMs of the GPU. Workloads launching multiple concurrent kernels 

can benefit from the “concurrent kernels” feature of modern GPUs 

[18] and utilize SMs with CTAs of multiple kernels. Meantime, SMs 

should have enough resources to exploit the benefits of a well-

parallelized workload1. 

- Branch Divergence: The entire threads forming a warp execute 

the same instruction until a branch instruction is reached. Upon 

executing branch instructions, threads taking different paths in a warp 

force a performance penalty in GPUs using an SIMT architecture. 

This penalty is the result of replacing execution of a fully occupied 

warp with two warps (one for the taken path following the branch, 

one for the not taken path) with less-than-maximum number of 

threads.  Existing GPUs do this by temporarily inactivating threads, 

which do not belong to the current diverging path, forcing a decrease 

in the SIMD utilization. 

- Memory Divergence: When executing memory instructions, 

threads of a warp can potentially diverge into two groups; threads 

that find their data in the cache and threads that miss the data. If a 

thread of a warp misses the data, the entire warp should wait for 

fetching the data. To reduce the cost [5] associated with the data 

                                                           
(
 We define a well-parallelized workload as a workload that scales to all SMs 

and assigns close to maximum allowed CTAs to each SM. 



 
Figure 2. Performance Potentials: A: DWF Memory Potential: The gap between 

performance of LR-DC-M and LR-DC-IM. B: PDOM Memory Potential: The 

gap between performance of LR-PC-M and LR-PC-IM. C: DWF Control 

Potential: The gap between performance of LR-DC-M and LR-IC-M. D: 

PDOM Control Potential: The gap between performance of LR-PC-M and LR-

IC-M. E: DWF Resource Potential: The gap between performance of LR-DC-M 

and UR-DC-M. F: PDOM Resource Potential: The gap between performance of 

LR-PC-M and UR-PC-M. The Y-axis is scaled to present relative average 

performance for all the benchmarks used in this study. Performance is 

normalized relative to LR-DC-M’s performance. 

 

 

 
Figure 3. Performance for different machine models showing: (a) Memory 

potentials. (b) Control potentials. (c) Resource potentials. Performances are 

presented relative to LR-DC-M.  
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fetch, SM proceeds with executing other ready warps effectively 

hiding the latency associated with the cache miss. In the absence of 

enough ready warps, SM stalls and has to stay idle waiting for the 

missing data. 

In order to evaluate how each parameter impacts performance in 

GPUs, we develop a set of machine models. We introduce twelve 

machine models represented using the X-Y-Z notation. In this 

representation X indicates if the machine has limited (LR) or 

unlimited execution resources (UR). Y indicates the control-flow 

mechanism used by the machine. Here DC, PC and IC represent 

DWF, PDOM and ideal control-flow, respectively. Finally, Z 

represents the memory model used. M indicates non-ideal memory 

systems, whereas IM models an ideal one.  Accordingly we study the 

following twelve machines: LR-DC-M, LR-PC-M, LR-DC-IM, 

LR-PC-IM, UR-DC-M, UR-PC-M, LR-IC-M, LR-IC-IM, UR-

DC-IM, UR-PC-IM, UR-IC-M and UR-IC-IM.  

Machines using UR in their notation exploit SMs having 

unlimited resources to let the GPU interleave execution of all CTAs 

of the workload concurrently. Under this model there is no resource 

shortage in “thread pool”, “Shared Memory” and “Register File”. The 

inverse notation LR, indicates that SMs have the limited resources 

presented in Table 1. DC and PC, on the other hand, indicate that a 

model uses one of the two SIMD control-flow mechanisms (DC for 

DWF and PC for PDOM). Inversely, IC indicates using an ideal 

control-flow mechanism where diverging branches do not impose 

any additional penalty in the SMs. An IC machine is similar to an 

MIMD architecture where an SM is a multi-core processor and each 

PE is capable of executing any instruction. We modeled this machine 

using the MIMD configuration of GPGPU-sim. 

M indicates that a model uses a conventional memory system. 

The inverse notation, IM, indicates access to an ideal memory system 

with zero latency. 

LR-PC-M, for example, represents a real GPU with limited 

execution resources using the PDOM control-flow mechanism and a 

realistic memory system. LR-DC-M is a machine with limited 

execution resources using the DWF control-flow mechanism and a 

realistic memory system. LR-PC-IM and LR-DC-IM are different 

from LR-PC-M and LR-DC-M as LR-PC-IM and LR-DC-IM come 

with an ideal memory system. A machine that has unlimited 

resources per SM, using a realistic memory system and the PDOM 

control-flow mechanism is referred to as UR-PC-M. Similarly UR-

DC-M is a machine with unlimited SM resources, DWF control-flow 

mechanism and realistic memory. LR-IC-IM is a machine 

combining zero-latency memory with the MIMD architecture for 

SMs but still using limited SM resources. In this machine, individual 

PEs can execute different instructions. UR-IC-M is a machine 

assuming unlimited SM resource and an MIMD SM architecture. 

UR-PC-IM is a machine model using PDOM as its control flow 

solution but otherwise ideal. Similarly, UR-DC-IM is an otherwise 

ideal machine using the non-ideal DWF control-flow mechanism. 

Finally, a 100% ideal machine is represented by UR-IC-IM. 

 

A. Performance Potentials 

The performance gap between different machine models provides 

valuable insight towards how each parameter could potentially 

impact performance. There are three performance gaps per control-

flow mechanism:  

a) The gap between the performance of LR-XC-IM and LR-

XC-M, which shows the speedup that can be reached 

under an ideal memory system. We refer to this gap as 

memory potential. 

b) The gap between the performance of LR-IC-M and LR-

XC-M, which shows the speedup achievable when the 

branch divergence is eliminated completely. We refer to 

this gap as control potential. 

c) The gap between the performance of UR-XC-M and LR-

XC-M models, which shows potential speedup achievable 

when SM has unlimited resources to interleave execution 

of all CTAs. We refer to this gap as resource potential. 

 Figure 2 shows how we use machine models to find and interpret 

the performance potentials. It also shows average relative 

performance for each model compared to the baseline.  We compare 

LR-XC-M to LR-XC-IM to find memory potential, LR-XC-M to LR-

IC-M to find control potential, and LR-XC-M to UR-XC-M to find 



 
Figure 5. Performance Distances: A: Memory Distance: The gap between 

performance of UR-IC-M and UR-IC-IM. B: DWF Control Distance: The gap 

between performance of UR-DC-IM and UR-IC-IM. C: PDOM Control 

Distance: The gap between performance of UR-PC-IM and UR-IC-IM. D: 

Resource Distance: The gap between performance of LR-IC-IM and UR-IC-

IM. The Y-axis is scaled to present relative average performance for all the 

benchmarks used in this study. Performance is normalized relative to LR-DC-

M’s performance. 

 

 

 
Figure 6. Performance of machine models organized to show (a) Memory 

distance, (b) Control distance, (c) Resource distance. Performances are 

reported relative to LR-DC-M.  
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Figure 4. Average memory access latency comparison of 3 machine models 

involved in control potentials. Average memory access latency is an average 

latency of all memory accesses of a benchmark. Latencies are normalized to 

LR-DC-M latency. 
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resource potential. Memory potential shows potential performance 

improvement obtainable if the memory system was ideal. Control 

potential shows potential performance improvement if we could 

eliminate branch divergence entirely using MIMD architecture 

instead of SIMD. Resource potential reveals how much performance 

is enhanced if a GPU could provide enough resources to interleave 

execution of all CTAs of a well-parallelized workload. These models 

show the maximum improvement a designer could expect by 

investing in different GPU components. 

Figure 3 shows experimental results for different machine models 

per benchmark. This figure is organized to show memory potential in 

3(a), control potential in 3(b) and resource potential in 3(c). On 

average, memory potential is largest as removing the memory 

obstacle improves performance for PDOM and DWF up to 59% and 

61% respectively (Figure 3(a)).  

As presented in Figure 3(b), eliminating branch divergence 

results in performance improvement of 2% compared to DWF. 

Meantime, we witness a performance loss of 7% when comparing a 

system with ideal control flow to PDOM. Our studies shows that this 

unexpected behavior could be explained by the fact that exploiting 

MIMD architecture imposes extra pressure on off-chip DRAMs 

resulting in an overall performance loss. This pressure is caused by 

an increase in the number of memory requests resulting from un-

coalesced memory accesses occurring under ideal control-flow. To 

provide better understanding, in Figure 4 we report average memory 

access latency for the machines presented in Figure 3(b). On average, 

average memory access latency for MIMD is 87% and 68% higher 

than SIMD machines using PDOM and DWF, respectively. Similar 

conclusions could be made regarding DWF’s performance. As 

presented in Figure 3(b), DWF shows lower performance compared 

to PDOM. This is consistent with Figure 4 where average memory 

access latency for PDOM is less than DWF. This could be the result 

of the negative impact of thread regrouping used by DWF on 

memory access coalescing. 

When SMs are equipped with unlimited resources (resource 

potential), performance is improved by 9.4% and 8.6% for machines 

using PDOM and DWF respectively (Figure 3(c)). Unlimited 

resources provide more active threads per SM. Higher number of 

active threads can facilitate memory access latency hiding. Under a 

fixed number of CTA limiting resources, DWF already has a higher 

number of active threads compared to PDOM as it does not mask any 

threads. Consequently DWF could benefit less from the provided 

extra resources (thread pool, shared memory and register file) 

compared to PDOM. 

We conclude from Figure 3 that investing in new solutions to 

address memory inefficiencies would result in much higher returns 

compared to returns coming from investing in per SM resources or 

more advanced control-flow mechanisms. Moreover, we conclude 

that we would benefit from investing in control-flow mechanisms 

only if the overall impact on memory pressure is well studied and 

accommodated.  

 

B. Performance Distances 

The models introduced in the previous section help understanding 

investment points with better and possible returns. We are also 

interested in finding out which issues keep us further from an ideal 

GPU. We refer to this as the performance distance associated with 

each parameter. It should be noted that the two answers could be 

different from a theoretical point of view. The performance distance 

of each parameter can be obtained by finding the gap between the 

performance of a 100% ideal system (UR-IC-IM) and machines that 

are under realistic restrictions in only one of the three parameters:   

a) The gap between the performance of UR-IC-M and UR-IC-

IM shows how much a realistic memory system is 

responsible for distancing an otherwise ideal system from an 

ideal performance.  We refer to this as memory distance. 



 

 

 
Figure 7. Performance of aggressive memory machine models. (a) Memory 

potentials. (b) Control potentials. (c) Resource potentials. 2M refers to a 

machine whose L1 cache size and number of memory controllers are 

doubled relative to M baseline machine model. Performances are reported 

relative to LR-DC-M.  
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Figure 8. Performance of aggressive resource machine models. (a) Memory 

potentials. (b) Control potentials. (c) Resource potentials. 2R refers to a 

machine exploits double thread pool, register file and shared memory 

relative to LR baseline machine model. Performances are reported relative to 

LR-DC-M. 
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b) The gap between the performance of UR-XC-IM and UR-

IC-IM shows how much current control-flow mechanisms 

distance us from an ideal system.  We refer to this as control 

distance.  

c) The gap between the performance of LR-IC-IM and UR-IC-

IM shows how much lack of the resources for interleaving 

execution of all CTAs downgrades performance compared 

to an ideal system. We refer to this as resource distance. 

Figure 5 presents the above distances, and clarifies how much a 

performance-impacting parameter solely affects GPU performance. 

Figure 6 shows experimental results for different machine models 

per benchmark. This figure is organized to show memory distance in 

6(a), control distance in 6(b) and resource distance in 6(c). As 

reported an ideal system loses 40% performance if forced to exploit a 

realistic memory system (Figure 6(a)). The control-flow mechanism 

comes second as an ideal system loses about 15% under DWF and 

8% under PDOM (Figure 6(b)). An ideal system shows very little 

sensitivity to per SM resources as it loses close to 2% performance to 

resource restrictions (Figure 6(c)). A general conclusion could be 

made that a non-ideal memory system will impose huge penalties 

negating most achievements possible by using ideal control-flow or 

unlimited per SM resources. On the other hand, in the presence of an 

ideal memory system, the performance lost to realistic control-flow 

or per SM resources could be compensated to a large extend.  

 

5. SENSITIVITY ANALYSIS 

In this section we investigate if our findings presented earlier stay 

valid under possible variations in GPU microarchitecture. In 

Subsection A, we study the impact of using a more aggressive 

memory system on our findings. In Subsection B we study how 

doubling the number of per SM resources impacts results. In this 

section we limit our study to performance potentials. 

 

A. Aggressive Memory 

We investigate a GPU equipped with an aggressive memory 

(referred to as LR-XC-2M). This aggressive memory system has 

twice L1 constant, data and texture cache size and comes with twice 

the number of memory controllers compared to LR-XC-M. 

Aggressive memory configuration accelerates LR-DC-M and LR-PC-

M up to 26% and 24% respectively (not presented in figures).  

In Figure 7 we report average performance potentials as 

performance gaps in different models. We report memory potential, 

control potential and resource potential in parts a, b and c 

respectively.  

As presented in Figure 7(a), memory potential is reduced to 28% 

for both DWF and PDOM under aggressive memory. As Figure 7(b) 

shows control potential does not improve under aggressive memory; 

it reaches almost -0.4% for DWF and -8% for PDOM. Resource 

potential shown in Figure 7(c) is 8% for PDOM and almost zero for 

DWF. We make the following conclusions from Figure 7: 1) 

Exploiting an aggressive memory system can reduce memory 

potential significantly. 2) Having an aggressive memory makes DWF 

needless to additional resources for interleaving of all CTAs. 3) 

DWF’s performance appears to be more sensitive to memory 

configuration compared to PDOM. 

 

B. Aggressive Per SM Resources 

In this section we investigate our machine models for an SM 

equipped with aggressive resources. The machines with aggressive 

resources (which use 2R in their abbreviation) exploits “thread pool”, 

“register file” and “shared memory” resources twice the size of 

baseline architecture presented in Table 1. Aggressive resources for 

LR-DC-M and LR-PC-M can accelerate both machines up to 5% (not 

presented in figures.) 

As shown in Figure 8(a), using aggressive resources reduces 

memory potential down to 52% and 51% for DWF and PDOM 

respectively. Control potential shows very little sensitivity to 

aggressive resources; control potential is -8% and 2% for PDOM and 

DWF, respectively (Figure 8(b)). As reported in Figure 8(c), 

expectedly, resource potential decreases by equipping baseline 

architecture with aggressive resources and reaches 4% for PDOM 

and 3% for DWF.  

 



6. CONCLUDING REMARKS 

In this study we developed and studied a set of machine models 

to identify how much speedup can be expected by eliminating 

different performance obstacles in GPUs. Moreover, we investigated 

how much each obstacle contributes to our current distance from an 

ideal GPU. Our results show that memory has the greatest impact in 

both measurements. 

The GPUs studied use two non-ideal control-flow mechanisms; 

Dynamic Warp Formulation and Postdomonator Reconvergence. We 

showed that DWF is more sensitive to branch divergence and 

memory access latency while it can tolerate resource limitation better 

than PDOM. 

Our findings show that further improvement of control-flow 

mechanisms requires paying attention to the impact on memory 

pressure.  
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