

Performance in GPU Architectures: Potentials and Distances

Abstract

GPUs can execute up to one TFLOPs at their peak performance. This

peak performance, however, is rarely reached as a result of resource

underutilization. Three parameters contribute to this inefficiency: branch

divergence, memory access delays and limited workload parallelism. To this

end we suggest machine models to estimate performance gain potentials

obtainable by eliminating each performance degrading parameter. Such

estimates indicate how much improvement designers could expect by investing

in different GPU subsections. Moreover, our models show how much

performance is lost compared to an ideal GPU as a result of non-ideal GPU

components. We conclude that memory is by far the most important parameter

among the three issues impacting performance. We show that in the presence

of an ideal memory system, GPU performance can reach within 59% of an

ideal system. Meantime, using an ideal control-flow mechanism or unlimited

execution resources does not come with the same impact. In fact, as we show

in this study, an ideal control-flow could harm performance as the result of

increasing pressure on the memory system.

In addition, we study our models under GPUs exploiting aggressive

memory systems and well-equipped Stream Multiprocessors. We investigate

how previously suggested control-flow solutions impact performance-

degrading issues and make recommendation to enhance control-flow

mechanisms.

1. INTRODUCTION

Graphics processing units (GPUs) are used as accelerators for

general-purpose throughput-intensive workloads in high performance

computing. Modern GPUs are capable of reaching peak processing

power of one TFLOPS for single-precision operations and 500

GFLOPS for double-precision operations in just a single chip [1]. In

addition to this dense processing capability, GPUs come with little

power dissipation providing further motivation for deploying them in

computers in order to maximize performance per cost [4].

One of the major concerns of GPU designers is the

underutilization of GPU’s computational resources during execution

of general-purpose applications [2]. General-purpose applications are

divided into memory-intensive and computation-intensive classes.

Memory-intensive applications underutilize GPU resources

mainly as the result of high pressure on the memory. The pressure

can increase under unpredictable memory access patterns [12]. While

GPU’s typical memory bandwidth is about 5x higher than CPUs [10],

GPUs are restricted by the fact that their bandwidth is shared among

thousands of threads [14]. This limitation does not appear as serious

for graphical workloads since in such workloads, threads share large

data sets [3]. Consequently, GPUs are capable of providing the

required bandwidth for graphical applications [13].

Computation-intensive applications underutilize GPU resources

often as a result of frequent occurrence of branch instructions [12,

15]. In contrast to conventional graphical computations, general-

purpose workloads typically include a high number of branch

instructions [11]. GPUs execute groups of threads in lock-step. All

the threads that belong to the same group (also referred to as warps)

execute the same instruction but use different data (an SIMD-like

model referred to as SIMT by NVIDIA [3]). Lock-step execution is

violated if the branch instruction diverges, dividing the warp into two

sub-groups with different program counters [7]. This can impact

performance negatively. Current GPUs use masking and re-

convergence [9] to address this issue.

There have been many studies at different levels to address

resource underutilization in GPUs. These studies could be

categorized into memory solutions and control-flow mechanism

solutions. Memory solutions aim at either reducing or hiding memory

latency. Control-flow solutions reduce the impact of branch

divergence by regrouping the threads into new warps.

On-chip last-level shared caches [16] are commonly used to

reduce average memory latency. On the off-chip side, DRAM

scheduling policy can also impact memory latency [19, 20]. Hiding

memory latency generally is effectively feasible under higher number

of concurrent threads. In the absence of high concurrency, it is

possible to diverge the warp and let the hit-threads (threads that hit in

the cache) continue [17], hiding the latency of miss-threads.

Basic control-flow mechanisms divide warps into independently

schedulable warps on every diverging branch instructions. Over-

divergence occurs when these divided warps experience a diverging

branch again. Stack-based reconvergence mechanisms prevent over-

divergence of a warp with thread-masking and reconvergence [9].

Other studies have used dynamic warps to keep all threads active and

avoid temporal inactivation due to thread-masking. Fung et al. [7]

suggested dynamically reconstructing the warps to keep threads of

the same diverging path in the same warp. Meng et al. [8] suggested

splitting the warp into independently schedulable warp-splits.

However, unlike [9] and [7], this mechanism reconverges these warp-

splits after execution of the diverging paths and revives the original

warp.

Our study shows that greedy control-flow mechanisms aiming at

maximizing computational resource utilization harm coalescing

memory accesses [3] and increase pressure on off-chip memory

significantly.

Ahmad Lashgar

School of Electrical and Computer Engineering

College of Engineering

University of Tehran

a.lashgar@ece.ut.ac.ir

Amirali Baniasadi

Electrical and Computer Engineering Department

University of Victoria

amirali@ece.uvic.ca

Figure 1. Stream Multiprocessor shares CTA limiting resources (thread

pool, register file and shared memory) between concurrent CTAs.

In addition to memory and branch divergence, the third parameter

impacting performance in GPUs is the available Streaming

Multiprocessor (SM) resources, which could limit the number of

concurrent Cooperative Thread Arrays (CTAs) for highly parallel

applications. An increase in such resources would benefit

applications that come with enough parallelization.

 Finding new and balanced solutions to facilitate better usage of

GPUs requires a deep understanding of current obstacles and their

impact on previously suggested solutions. Therefore in this work we

study the impact of branch divergence, memory and execution

resource limitations on GPUs.

In summary we make the following contributions:

• We develop a set of machine models to show how much

speedup can be reached when each one of GPUs’

performance-impacting parameters is idealized. Moreover, we

compare our models to an ideal machine to show how each

parameter can impact an otherwise ideal GPU.

• We show that while improving any of the three performance-

impacting parameters can enhance performance, it is the

memory that has the greatest impact. We also show that an

ideal memory system can improve performance and reduce

the impact of other parameters.

• We explore abnormal trends in our results. In particular we

show how and why a non-ideal control-flow solution can

outperform an ideal control-flow mechanism as the result of

memory load variations.

• We introduce machine models to investigate how different

practical limitations distance us from peak and ideal

performance. We show that peak performance is highly

sensitive to memory performance and less dependent on per

SM resources and control-flow behavior.

• We explore whether our findings remain valid under changes

in GPU configurations and possible technology trends.

The rest of this paper is organized as follows. In Section 2 we

review background. In Section 3 we discuss our methodology. In

Section 4 we present and evaluate the machine models used in this

work. In Section 5 we study sensitivity analysis and investigate

whether our findings stay valid for alternative GPU configurations.

2. BACKGROUND

GPUs are built of hundreds of processing elements (PE). Each

cluster of PEs sharing resources is an SM. Scalable arrays of SMs are

connected to memory controllers through an interconnection

network. As shown in Figure 1, an SM has a thread pool, which

stores the status (no context) of outstanding threads. The pool is

shared among CTAs.

A group of threads (referred to as a warp) are executed on an SM

concurrently. The fetch and decode stages of the pipeline in each SM

are shared among all threads of the warp. The pipeline’s execution

bandwidth at Register Read and Execution stages is the SIMD width

and depends on the number of PEs per SM. Sharing the simple fetch

and decode stages of this in-order pipeline facilitates providing

enough chip area for hundreds of PEs.

In conventional GPUs a warp executes the same instruction from

different threads concurrently. Meantime threads are allowed to

diverge and execute different instructions. Conditional branch

instructions, however, can cause the warp to diverge (known as the

branch divergence hazard) resulting in inefficient resource utilization.

Control-flow mechanisms are required to remove or reduce the cost

associated with this hazard. In this work we study GPUs using two

well-known control-flow mechanisms, i.e. postdominator

reconvergence (PDOM) and dynamic warp formulation (DWF).

PDOM, which is used in GPUs such as NVIDIA G80[3], relies

on static warp formulation. Individual threads that construct a warp

do not change during threads’ lifetime. Placement of the threads in a

warp depends on their inter CTA unique id (TID in CUDA

terminology [2].) PDOM uses round-robin to issue the next warp to

the pipeline. PDOM uses masking to deal with branch divergence.

Masking stores multiple program counters (PC) per warp. The mask

vector for each PC represents threads associated with the PC. During

executing an instruction with a particular PC, the mask temporarily

inactivates the threads not associated with the PC. PDOM uses a

stack per warp to prevent over-divergence and to guarantee that

vector masks associated with the same PC will eventually merge.

This is done by using additional information (reconvergence point)

passed to branch instruction [7].

PDOM comes with the advantage of guaranteeing to execute top-

level basic blocks (starting with reconvergence points) with

maximum SIMD utilization. Memory accesses belonging to threads

with close TIDs are usually performed in the same SM. PDOM

benefits from this locality as it places close TIDs in the same warp

and coalesces their memory accesses whenever possible. Meantime,

PDOM shows poor performance in the presence of large number of

instructions in divergent paths. Another PDOM disadvantage is due

to the fact that masking and inactivating threads results in avoiding

execution of threads that may be ready and if executed can

potentially hide the latency of memory accesses.

The idea behind DWF is to merge the warps with the same

divergent path to maintain high utilization under SIMD. DWF cannot

reach this goal unless enough warps with the same divergent path

exist.

Since a thread may be scheduled in different warps under DWF,

DWF uses lane aware scheduling and preserves SIMD lane of the

thread in any warp. Lane aware scheduling uses the original

In
te

rc
o

n
n

e
ct

io
n

 N
e

tw
o

rk

MCtrl&
DRAM(DRAM(DRAM(DRAM&

MCtrl(
DRAM(DRAM(DRAM(DRAM(

. . .

. . .

. . .

MCtrl)
DRAM(DRAM(DRAM(DRAM)

MCtrl*
DRAM(DRAM(DRAM(DRAM*

. . .

. . .

TPC(

SM(

SM*

SM,

TPC(-

SM(

SM*

SM,

Thread Pool

L(Data L(Cost L(Te.t

PE,* PE(PE* PE,(

R
e

g
iste

r F
ile

CTAID Program Counter

TID CTAID Program Counter

.

.

.

.

.

.

.

.

.

.

.

.

TID

S
h

a
re

d
 M

e
m

o
ry

…

…

Table 2. Benchmarks Characteristics: BR, TR and CC present branch instruction

frequency, the share of taken branches and maximum allowed CTAs per SM,

respectively.
Name Abbr. Grid Size CTA Size #Insn BR(%) TR(%) CC(%)

Back

Propag[21]
BKP 2x(1,64,1) 2x(16,16,1) 2.9M 7 74 4

BFS

Graph[21]
BFS 16x(8,1,1) 16x(512,1,1) 1.4M 13 51 4

Needle[21] NW

2x(1,1,1)

2x(2,1,1)

…

2x(31,1,1)

(32,1,1)

63x(16,1,1) 12.9M 11 72 7

NN_cuda[21] NN 4x(938,1,1) 4x(16,16,1) 5.9M 8 75 8

Hotspot[21] HSPT (43,43,1) (16,16,1) 76.2M 8 17 2

Dyn_Proc[21] DYNP 13x(35,1,1) 13x(256,1,1) 64M 7 27 4

Scan[23] SCN (64,1,1) (256,1,1) 3.6M 18 80 4

Coulumb

Potential[22]
CP (8,32,1) (16,8,1) 113M 6 99 8

Fast

Walsh

Transform[23]

FWT

6x(32,1,1)

3x(16,1,1)

(128,1,1)

7x(256,1,1)

3x(512,1,1)
11.1M 5 49 4,2

Gaussian[22] GAS 48x(3,3,1) 48x(16,16,1) 8.2M 4 66 4

Matrix

Mul[23]
MTM (5,8,1) (16,16,1) 2.4M 2 60 4

Srad[21] SRAD 3x(8,8,1) 3x(16,16,1) 9.1M 6 94 2,3

StoreGPU[22] STO (128,1,1) (256,1,1) 60.5M 1 76 1

Table 1. Baseline configurations.

Parameter Value

NoC

Total Number of SMs 30

Number of Memory Ctrls 6

Number of SM Sharing an

Interconnect
3

SM

Warp Size 32 Threads

Number of Thread per SM 1024

Number of Register per SM 16384 32-bit

Number of PEs per SM 32

Shared Memory Size 16KB

L1 Data Cache 64KB:8-way:64BytePerBlock

L1 Texture Cache 8KB:2-way:64BytePerBlock

L1 Constant Cache 8KB:2-way:64BytePerBlock

Clocking

Core Clock 325 MHz

Interconnect Clock 650 MHz

DRAM memory Clock 800MHz

Memory

Number of Banks Per Memory Ctrls 8

DRAM Scheduling Queue Size 32

DRAM Scheduling Policy Fast Ideal Scheduler

GDDR3 Memory Timing
tRRD=12, tRCD=21, tRAS=13,

tRP=34, tRC=9, tCL=10

Control-Flow Mechanisms

Base DWF issue heuristic Majority

PDOM warp scheduling round-robin

placement of the thread in its original warp to avoid extra register

back conflict [2,7] during Register Read stage.

DWF’s performance is highly sensitive to the warp-issue policy

(referred to as issue heuristic). An effective issue heuristic should

execute all threads of a CTA at the same pace. Greedy issue

heuristics can starve low-priority threads. Consequently, when

starved threads are finally scheduled for execution, they may not be

able to fill the SIMD width resulting in huge performance drop,

referred to as starvation eddies [6]. In this work we assume the

majority issue heuristic [7] as it outperforms other issue heuristics in

DWF.

DWF, on the other hand, does not mask any threads and ready

threads are always active. Meantime, DWF cannot guarantee

execution with maximum SIMD utilization for any basic block as it

does not consider reconvergence points.

3. METHODOLOGY

We modified GPGPU-sim (version 2.1.1b) to simulate and

evaluate our models. We configured GPGPU-sim to model

NVIDIA’s Quadro FX5800 with L1 cache for Constant, Texture and

Data memories. We assumed 32 PEs per SM (instead of 8 PEs per

SM used in conventional GPUs such as FX5800) to model memory

access coalescing more effectively. Meantime, we reduced SM clock

rate down to 1/4 to reduce the impact of the extra pressure on off-

chip DRAM caused by the four times higher number of PEs per SM.

Table 1 shows our baseline configuration.

We included benchmarks from Rodinia[21], CUDA SDK 2.3[23]

and benchmarks used in[22]. We use benchmarks exhibiting different

behaviors: memory-intensiveness, compute-intensiveness, high and

low branch divergence occurrence and with both large and small

number of CTAs. We exclude some benchmarks due to compilation

and runtime problems. Table 2 shows benchmark characteristics for

the applications used in this study.

Note that the number of concurrent CTAs per SM is limited by

how effectively SM resources are utilized by benchmarks. In Table 2,

CC shows the number of CTAs that can be executed concurrently on

an SM in each benchmark. For a specific kernel, this number is

limited by the size of following resources: thread pool size, shared

memory and register file.

In this work we report performance as measure by IPC

(Instruction per Clock). GPUs are high-throughput architectures;

therefore an alternative way to measure performance is to report

Ops/s (Operations per Second). We do not report Ops/s in the interest

of space.

4. MACHINE MODELS

According to CUDA Programming Guides [2], three parameters

impact performance in GPUs:

- Workload Parallelism: In order to achieve high performance,

workloads should have enough parallelism to potentially utilize

GPU’s computational resources. In workloads launching just a single

kernel, the kernel should have enough CTAs to utilize all available

SMs of the GPU. Workloads launching multiple concurrent kernels

can benefit from the “concurrent kernels” feature of modern GPUs

[18] and utilize SMs with CTAs of multiple kernels. Meantime, SMs

should have enough resources to exploit the benefits of a well-

parallelized workload1.

- Branch Divergence: The entire threads forming a warp execute

the same instruction until a branch instruction is reached. Upon

executing branch instructions, threads taking different paths in a warp

force a performance penalty in GPUs using an SIMT architecture.

This penalty is the result of replacing execution of a fully occupied

warp with two warps (one for the taken path following the branch,

one for the not taken path) with less-than-maximum number of

threads. Existing GPUs do this by temporarily inactivating threads,

which do not belong to the current diverging path, forcing a decrease

in the SIMD utilization.

- Memory Divergence: When executing memory instructions,

threads of a warp can potentially diverge into two groups; threads

that find their data in the cache and threads that miss the data. If a

thread of a warp misses the data, the entire warp should wait for

fetching the data. To reduce the cost [5] associated with the data

(
 We define a well-parallelized workload as a workload that scales to all SMs

and assigns close to maximum allowed CTAs to each SM.

Figure 2. Performance Potentials: A: DWF Memory Potential: The gap between

performance of LR-DC-M and LR-DC-IM. B: PDOM Memory Potential: The

gap between performance of LR-PC-M and LR-PC-IM. C: DWF Control

Potential: The gap between performance of LR-DC-M and LR-IC-M. D:

PDOM Control Potential: The gap between performance of LR-PC-M and LR-

IC-M. E: DWF Resource Potential: The gap between performance of LR-DC-M

and UR-DC-M. F: PDOM Resource Potential: The gap between performance of

LR-PC-M and UR-PC-M. The Y-axis is scaled to present relative average

performance for all the benchmarks used in this study. Performance is

normalized relative to LR-DC-M’s performance.

Figure 3. Performance for different machine models showing: (a) Memory

potentials. (b) Control potentials. (c) Resource potentials. Performances are

presented relative to LR-DC-M.

LR-DC-M
LR-PC-M

LR-DC-M

LR-PC-M

LR-DC-M
LR-PC-M

LR-DC-IM
LR-PC-IM

LR-IC-M

LR-IC-M

UR-DC-M
UR-PC-M

A B

C
D E F

-.0

(

(.*

(.1

(.&

(.0

DWF

Memory

Potential

PDOM

Memory

Potential

DWF Control

Potential

PDOM

Control

Potential

DWF

Resource

Potential

PDOM

Resource

Potential
N

o
rm

a
li

ze
d

 A
v

g
.

IP
C

Performance Potentials

-.&

(

(.1

(.0

.

*.&

,

BKP BFS DYNP FWT GAS HSPT MTM NW NN SCN SRAD STO CP AVG

N
o

rm
a

li
ze

d
 I

P
C

(a)

LR-DC-M LR-PC-M LR-DC-IM LR-PC-IM

-.1

-.&

-.0

(

(.*

(.1

(.&

(.0

BKP BFS DYNP FWT GAS HSPT MTM NW NN SCN SRAD STO CP AVG

N
o

rm
a

li
ze

d
 I

P
C

(b)

LR-DC-M LR-PC-M LR-IC-M

-.0

(

(.*

(.1

(.&

(.0

*

BKP BFS DYNP FWT GAS HSPT MTM NW NN SCN SRAD STO CP AVG

N
o

rm
a

li
ze

d
 I

P
C

(c)

LR-DC-M LR-PC-M UR-DC-M UR-PC-M

fetch, SM proceeds with executing other ready warps effectively

hiding the latency associated with the cache miss. In the absence of

enough ready warps, SM stalls and has to stay idle waiting for the

missing data.

In order to evaluate how each parameter impacts performance in

GPUs, we develop a set of machine models. We introduce twelve

machine models represented using the X-Y-Z notation. In this

representation X indicates if the machine has limited (LR) or

unlimited execution resources (UR). Y indicates the control-flow

mechanism used by the machine. Here DC, PC and IC represent

DWF, PDOM and ideal control-flow, respectively. Finally, Z

represents the memory model used. M indicates non-ideal memory

systems, whereas IM models an ideal one. Accordingly we study the

following twelve machines: LR-DC-M, LR-PC-M, LR-DC-IM,

LR-PC-IM, UR-DC-M, UR-PC-M, LR-IC-M, LR-IC-IM, UR-

DC-IM, UR-PC-IM, UR-IC-M and UR-IC-IM.

Machines using UR in their notation exploit SMs having

unlimited resources to let the GPU interleave execution of all CTAs

of the workload concurrently. Under this model there is no resource

shortage in “thread pool”, “Shared Memory” and “Register File”. The

inverse notation LR, indicates that SMs have the limited resources

presented in Table 1. DC and PC, on the other hand, indicate that a

model uses one of the two SIMD control-flow mechanisms (DC for

DWF and PC for PDOM). Inversely, IC indicates using an ideal

control-flow mechanism where diverging branches do not impose

any additional penalty in the SMs. An IC machine is similar to an

MIMD architecture where an SM is a multi-core processor and each

PE is capable of executing any instruction. We modeled this machine

using the MIMD configuration of GPGPU-sim.

M indicates that a model uses a conventional memory system.

The inverse notation, IM, indicates access to an ideal memory system

with zero latency.

LR-PC-M, for example, represents a real GPU with limited

execution resources using the PDOM control-flow mechanism and a

realistic memory system. LR-DC-M is a machine with limited

execution resources using the DWF control-flow mechanism and a

realistic memory system. LR-PC-IM and LR-DC-IM are different

from LR-PC-M and LR-DC-M as LR-PC-IM and LR-DC-IM come

with an ideal memory system. A machine that has unlimited

resources per SM, using a realistic memory system and the PDOM

control-flow mechanism is referred to as UR-PC-M. Similarly UR-

DC-M is a machine with unlimited SM resources, DWF control-flow

mechanism and realistic memory. LR-IC-IM is a machine

combining zero-latency memory with the MIMD architecture for

SMs but still using limited SM resources. In this machine, individual

PEs can execute different instructions. UR-IC-M is a machine

assuming unlimited SM resource and an MIMD SM architecture.

UR-PC-IM is a machine model using PDOM as its control flow

solution but otherwise ideal. Similarly, UR-DC-IM is an otherwise

ideal machine using the non-ideal DWF control-flow mechanism.

Finally, a 100% ideal machine is represented by UR-IC-IM.

A. Performance Potentials

The performance gap between different machine models provides

valuable insight towards how each parameter could potentially

impact performance. There are three performance gaps per control-

flow mechanism:

a) The gap between the performance of LR-XC-IM and LR-

XC-M, which shows the speedup that can be reached

under an ideal memory system. We refer to this gap as

memory potential.

b) The gap between the performance of LR-IC-M and LR-

XC-M, which shows the speedup achievable when the

branch divergence is eliminated completely. We refer to

this gap as control potential.

c) The gap between the performance of UR-XC-M and LR-

XC-M models, which shows potential speedup achievable

when SM has unlimited resources to interleave execution

of all CTAs. We refer to this gap as resource potential.

 Figure 2 shows how we use machine models to find and interpret

the performance potentials. It also shows average relative

performance for each model compared to the baseline. We compare

LR-XC-M to LR-XC-IM to find memory potential, LR-XC-M to LR-

IC-M to find control potential, and LR-XC-M to UR-XC-M to find

Figure 5. Performance Distances: A: Memory Distance: The gap between

performance of UR-IC-M and UR-IC-IM. B: DWF Control Distance: The gap

between performance of UR-DC-IM and UR-IC-IM. C: PDOM Control

Distance: The gap between performance of UR-PC-IM and UR-IC-IM. D:

Resource Distance: The gap between performance of LR-IC-IM and UR-IC-

IM. The Y-axis is scaled to present relative average performance for all the

benchmarks used in this study. Performance is normalized relative to LR-DC-

M’s performance.

Figure 6. Performance of machine models organized to show (a) Memory

distance, (b) Control distance, (c) Resource distance. Performances are

reported relative to LR-DC-M.

UR-IC-M

UR-DC-IM

UR-PC-IM

LR-IC-IM

UR-IC-IM UR-IC-IM UR-IC-IM UR-IC-IM

A

B
C

D

(.-

(.*

(.1

(.&

(.0

*.-

Memory Distance DWF Control

Distance

PDOM Control

Distance

Resource Distance

N
o

rm
a

li
ze

d
 A

v
g

.
IP

C

-.--

(.--

*.--

,.--

1.--

BKP BFS DYNP FWT GAS HSPT MTM NW NN SCN SRAD STO CP AVG

N
o

rm
a

li
ze

d
 I

P
C

(a)

UR-IC-M UR-IC-IM

-.-

(.-

*.-

,.-

1.-

BKP BFS DYNP FWT GAS HSPT MTM NW NN SCN SRAD STO CP AVG

N
o

rm
a

li
ze

d
 I

P
C

(b)

UR-DC-IM UR-PC-IM UR-IC-IM

-.--

(.--

*.--

,.--

1.--

BKP BFS DYNP FWT GAS HSPT MTM NW NN SCN SRAD STO CP AVG

N
o

rm
a

li
ze

d
 I

P
C

(c)

LR-IC-IM UR-IC-IM

Figure 4. Average memory access latency comparison of 3 machine models

involved in control potentials. Average memory access latency is an average

latency of all memory accesses of a benchmark. Latencies are normalized to

LR-DC-M latency.

-

(

*

,

1

)

BKP BFS DYNP FWT GAS HSPT MTM NW NN SCN SRAD STO CP AVG

N
o

rm
a

li
ze

d
 A

v
e

ra
g

e

M
e

m
o

ry
 A

cc
e

ss
 L

a
te

n
cy

LR-DC-M

LR-PC-M

LR-IC-M

resource potential. Memory potential shows potential performance

improvement obtainable if the memory system was ideal. Control

potential shows potential performance improvement if we could

eliminate branch divergence entirely using MIMD architecture

instead of SIMD. Resource potential reveals how much performance

is enhanced if a GPU could provide enough resources to interleave

execution of all CTAs of a well-parallelized workload. These models

show the maximum improvement a designer could expect by

investing in different GPU components.

Figure 3 shows experimental results for different machine models

per benchmark. This figure is organized to show memory potential in

3(a), control potential in 3(b) and resource potential in 3(c). On

average, memory potential is largest as removing the memory

obstacle improves performance for PDOM and DWF up to 59% and

61% respectively (Figure 3(a)).

As presented in Figure 3(b), eliminating branch divergence

results in performance improvement of 2% compared to DWF.

Meantime, we witness a performance loss of 7% when comparing a

system with ideal control flow to PDOM. Our studies shows that this

unexpected behavior could be explained by the fact that exploiting

MIMD architecture imposes extra pressure on off-chip DRAMs

resulting in an overall performance loss. This pressure is caused by

an increase in the number of memory requests resulting from un-

coalesced memory accesses occurring under ideal control-flow. To

provide better understanding, in Figure 4 we report average memory

access latency for the machines presented in Figure 3(b). On average,

average memory access latency for MIMD is 87% and 68% higher

than SIMD machines using PDOM and DWF, respectively. Similar

conclusions could be made regarding DWF’s performance. As

presented in Figure 3(b), DWF shows lower performance compared

to PDOM. This is consistent with Figure 4 where average memory

access latency for PDOM is less than DWF. This could be the result

of the negative impact of thread regrouping used by DWF on

memory access coalescing.

When SMs are equipped with unlimited resources (resource

potential), performance is improved by 9.4% and 8.6% for machines

using PDOM and DWF respectively (Figure 3(c)). Unlimited

resources provide more active threads per SM. Higher number of

active threads can facilitate memory access latency hiding. Under a

fixed number of CTA limiting resources, DWF already has a higher

number of active threads compared to PDOM as it does not mask any

threads. Consequently DWF could benefit less from the provided

extra resources (thread pool, shared memory and register file)

compared to PDOM.

We conclude from Figure 3 that investing in new solutions to

address memory inefficiencies would result in much higher returns

compared to returns coming from investing in per SM resources or

more advanced control-flow mechanisms. Moreover, we conclude

that we would benefit from investing in control-flow mechanisms

only if the overall impact on memory pressure is well studied and

accommodated.

B. Performance Distances

The models introduced in the previous section help understanding

investment points with better and possible returns. We are also

interested in finding out which issues keep us further from an ideal

GPU. We refer to this as the performance distance associated with

each parameter. It should be noted that the two answers could be

different from a theoretical point of view. The performance distance

of each parameter can be obtained by finding the gap between the

performance of a 100% ideal system (UR-IC-IM) and machines that

are under realistic restrictions in only one of the three parameters:

a) The gap between the performance of UR-IC-M and UR-IC-

IM shows how much a realistic memory system is

responsible for distancing an otherwise ideal system from an

ideal performance. We refer to this as memory distance.

Figure 7. Performance of aggressive memory machine models. (a) Memory

potentials. (b) Control potentials. (c) Resource potentials. 2M refers to a

machine whose L1 cache size and number of memory controllers are

doubled relative to M baseline machine model. Performances are reported

relative to LR-DC-M.

(.-- (.(- (.*- (.,- (.1- (.)- (.&- (.9- (.0-

AVG

(a)

LR-DC-*M LR-PC-*M LR-DC-IM LR-PC-IM

(.(0 (.*- (.** (.*1 (.*& (.*0 (.,- (.,* (.,1 (.,& (.,0

AVG

(b)

LR-DC-*M LR-PC-*M LR-IC-*M

(.(- (.() (.*- (.*) (.,- (.,) (.1- (.1) (.)-

AVG

Normalized IPC

(c)

LR-DC-*M UR-DC-*M LR-PC-*M UR-PC-*M

Figure 8. Performance of aggressive resource machine models. (a) Memory

potentials. (b) Control potentials. (c) Resource potentials. 2R refers to a

machine exploits double thread pool, register file and shared memory

relative to LR baseline machine model. Performances are reported relative to

LR-DC-M.

- -.) ((.) *

AVG

(a)

*R-DC-M *R-PC-M *R-DC-IM *R-PC-IM

-.:0 ((.-* (.-1 (.-& (.-0 (.((.(* (.(1 (.(& (.(0

AVG

(b)

*R-DC-M *R-PC-M *R-IC-M

-.:) ((.-) (.((.() (.* (.*)

AVG

Normalized IPC

(c)

*R-DC-M UR-DC-M *R-PC-M UR-PC-M

b) The gap between the performance of UR-XC-IM and UR-

IC-IM shows how much current control-flow mechanisms

distance us from an ideal system. We refer to this as control

distance.

c) The gap between the performance of LR-IC-IM and UR-IC-

IM shows how much lack of the resources for interleaving

execution of all CTAs downgrades performance compared

to an ideal system. We refer to this as resource distance.

Figure 5 presents the above distances, and clarifies how much a

performance-impacting parameter solely affects GPU performance.

Figure 6 shows experimental results for different machine models

per benchmark. This figure is organized to show memory distance in

6(a), control distance in 6(b) and resource distance in 6(c). As

reported an ideal system loses 40% performance if forced to exploit a

realistic memory system (Figure 6(a)). The control-flow mechanism

comes second as an ideal system loses about 15% under DWF and

8% under PDOM (Figure 6(b)). An ideal system shows very little

sensitivity to per SM resources as it loses close to 2% performance to

resource restrictions (Figure 6(c)). A general conclusion could be

made that a non-ideal memory system will impose huge penalties

negating most achievements possible by using ideal control-flow or

unlimited per SM resources. On the other hand, in the presence of an

ideal memory system, the performance lost to realistic control-flow

or per SM resources could be compensated to a large extend.

5. SENSITIVITY ANALYSIS

In this section we investigate if our findings presented earlier stay

valid under possible variations in GPU microarchitecture. In

Subsection A, we study the impact of using a more aggressive

memory system on our findings. In Subsection B we study how

doubling the number of per SM resources impacts results. In this

section we limit our study to performance potentials.

A. Aggressive Memory

We investigate a GPU equipped with an aggressive memory

(referred to as LR-XC-2M). This aggressive memory system has

twice L1 constant, data and texture cache size and comes with twice

the number of memory controllers compared to LR-XC-M.

Aggressive memory configuration accelerates LR-DC-M and LR-PC-

M up to 26% and 24% respectively (not presented in figures).

In Figure 7 we report average performance potentials as

performance gaps in different models. We report memory potential,

control potential and resource potential in parts a, b and c

respectively.

As presented in Figure 7(a), memory potential is reduced to 28%

for both DWF and PDOM under aggressive memory. As Figure 7(b)

shows control potential does not improve under aggressive memory;

it reaches almost -0.4% for DWF and -8% for PDOM. Resource

potential shown in Figure 7(c) is 8% for PDOM and almost zero for

DWF. We make the following conclusions from Figure 7: 1)

Exploiting an aggressive memory system can reduce memory

potential significantly. 2) Having an aggressive memory makes DWF

needless to additional resources for interleaving of all CTAs. 3)

DWF’s performance appears to be more sensitive to memory

configuration compared to PDOM.

B. Aggressive Per SM Resources

In this section we investigate our machine models for an SM

equipped with aggressive resources. The machines with aggressive

resources (which use 2R in their abbreviation) exploits “thread pool”,

“register file” and “shared memory” resources twice the size of

baseline architecture presented in Table 1. Aggressive resources for

LR-DC-M and LR-PC-M can accelerate both machines up to 5% (not

presented in figures.)

As shown in Figure 8(a), using aggressive resources reduces

memory potential down to 52% and 51% for DWF and PDOM

respectively. Control potential shows very little sensitivity to

aggressive resources; control potential is -8% and 2% for PDOM and

DWF, respectively (Figure 8(b)). As reported in Figure 8(c),

expectedly, resource potential decreases by equipping baseline

architecture with aggressive resources and reaches 4% for PDOM

and 3% for DWF.

6. CONCLUDING REMARKS

In this study we developed and studied a set of machine models

to identify how much speedup can be expected by eliminating

different performance obstacles in GPUs. Moreover, we investigated

how much each obstacle contributes to our current distance from an

ideal GPU. Our results show that memory has the greatest impact in

both measurements.

The GPUs studied use two non-ideal control-flow mechanisms;

Dynamic Warp Formulation and Postdomonator Reconvergence. We

showed that DWF is more sensitive to branch divergence and

memory access latency while it can tolerate resource limitation better

than PDOM.

Our findings show that further improvement of control-flow

mechanisms requires paying attention to the impact on memory

pressure.

7. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments.

REFERENCES

[1] NVIDIA Tesla C2050 Specifications.

http://www.nvidia.com/object/product_tesla_C2050_C2070_us.html

[2] NVIDIA Corp. CUDA C Best Practices Guide Version 3.2.

http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs

/CUDA_C_Best_Practices_Guide.pdf

[3] J. E. Lindholm et al. NVIDIA Tesla: a Unified Graphics and

Computing Architecture. IEEE Micro, Volume 28 Issue 2, March

2008.

[4] Tianhe-1A, Nebulae and TSUBAME 2.0 supercomputers.

http://www.top500.org/

[5] H. Wong et al. Demystifying GPU Microarchitecture through

Microbenchmarking. IEEE International Symposium on Performance
Analysis of Systems and Software, March 2010.

[6] W. Fung and T.M. Aamodt. Thread Block Compaction for

Efficient SIMT Control Flow. 17th IEEE International Symposium

on High-Performance Computer Architecture (HPCA-17), 2011.

[7] W. Fung et al. Dynamic Warp Formation and Scheduling for

Efficient GPU Control Flow. Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture.

[8] J. Meng et al. Dynamic warp subdivision for integrated

branch and memory divergence tolerance. Proceedings of the 37th

annual international symposium on Computer architecture.

[9] B. W. Coon et al; US Patent 7,353,369: System and Method

for Managing Divergent Threads in a SIMD Architecture (Assignee

NVIDIA Corp.), April 2008.

[10] Victor W. Lee et al. Debunking the 100X GPU vs. CPU

Myth: An Evaluation of Throughput Computing on CPU and GPU.

Proceedings of the 37th annual international symposium on

Computer architecture.

[11] B. Coutinho et al. Performance Debugging of GPGPU

Applications with the Divergence Map. 2010 International

Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD).

[12] W.M. Hwu et al. Compute Unified Device Architecture

Application Suitability. Computing in Science and Engineering,

Volume 11, Issue 3, May 2009.

[13] NVIDIA Corp. NVIDIA GeForce 8800 GPU Architecture

Overview. pp 38. November 2006.

[14] S. Ryoo et al. Program optimization space pruning for a

multithreaded gpu. Proceedings of the 6th annual IEEE/ACM

international symposium on Code generation and optimization.

[15] S. Che et al. A performance study of general-purpose

applications on graphics processors using CUDA. Journal of Parallel

and Distributed Computing, Volume 68 Issue 10, October, 2008.

[16] A. Bakhoda and T.M. Aamodt. Extending the Scalability of

Single Chip Stream Processors with On-chip Caches. 2nd Workshop

on Chip Multiprocessor Memory Systems and Interconnects (CMP-

MSI 2008) in conjunction with ISCA 2008.

[17] D. Tarjan et al. Increasing memory miss tolerance for SIMD

cores. Proceeding SC '09, Proceedings of the Conference on High

Performance Computing.

[18] NVIDIA Corp. NVIDIA’s Next Generation CUDA Compute

Architecture: Fermi; v1.1

[19] G. L. Yuan et al. Complexity effective memory access

scheduling for many-core accelerator architectures. Proceedings of

the 42nd Annual IEEE/ACM International.

[20] N. B. Lakshminarayana and H. Kim.; "Effect of Instruction

Fetch and Memory Scheduling on GPU Performance" Workshop on

Language, Compiler, and Architecture Support for GPGPU, in

conjunction with HPCA/PPoPP 2010, 2010.

[21] Che S, et al.; Rodinia: A benchmark suite for heterogeneous

computing. 2009 IEEE International Symposium on Workload

Characterization (IISWC). 2009(c):44-54.

[22] Bakhoda A, et al.; Analyzing CUDA workloads using a

detailed GPU simulator. 2009 IEEE International Symposium on

Performance Analysis of Systems and Software. 2009:163-174.

[23] NVIDIA CUDA SDK. http://developer.nvidia.com/cuda-

toolkit-23-downloads

