
 Dynamic Warp Resizing: Analysis and Benefits in

High-Performance SIMT

Abstract—Modern GPUs synchronize threads grouped in warps.

The number of threads included in each warp (or warp size)

affects divergence, synchronization overhead, and the efficiency

of memory access coalescing. Small warps reduce the

performance penalty associated with branch and memory

divergence at the expense of a reduction in memory coalescing.

Large warps enhance memory coalescing significantly but also

increase branch and memory divergence. Dynamic workload

behavior, including branch/memory divergence and coalescing, is

an important factor in determining the warp size returning best

performance. Based on this observation, we propose Dynamic

Warp Resizing (DWR). DWR outperforms static warp size

decisions, up to 2.28X.

Keywords- GPU architecture; Performance; Warp size;

Memory access coalescing; Branch divergence;

I. INTRODUCTION

GPUs are still far behind their potential peak performance
as they face two important challenges: branch and memory
divergence [2]. One of the parameters strongly affecting the
performance impact of such divergences is the number of
threads in a warp or warp size. Small warps, i.e., warps as wide
as SIMD width, reduce the likelihood of branch/memory
divergence occurrence. On the other hand, small warps reduce
memory coalescing, which can increase memory stalls. Large
warps exploit potentially existing memory access localities
among neighbor threads and coalesce them to a few off-core
requests. On the negative side, large warps can increase
serialization and the branch/memory divergence frequency.

In this paper we evaluate the effect of warp size on GPU
performance and coalescing rate under general-purpose
workloads. Accordingly, we propose Dynamic Warp Resizing
or DWR to achieve performance benefits of both small and
large warps. We also propose a realistic hardware
implementation for DWR. More details regarding DWR
including area overhead, alternative implementations, and
evaluation under various microarchitectures (including those
with different SIMD width, and L1 cache size) and more
benchmarks is reported in our detailed technical report [3].

II. DYNAMIC WARP RESIZING

Overview. DWR is an adaptive microarchitectural solution,
which varies warp size according to program behavior. Warp
size is initially set to SIMD width (referred to as sub-warp) but
can expand upon encountering specific program behaviors.

This dynamic increase in warp size increases memory accesses
coalescing (often absent from systems using small warps) and
relies on using barrier synchronizers to synch and combine
multiple sub-warps. DWR extends the ISA to implement this
synchronization and warp scheduler to support warp
combining.

Synchronization points. DWR groups and issues warps
with different sizes; i) large warps for specific instructions, and
ii) sub-warps for other instructions. Partner sub-warps are
synchronized to build one large warp to execute the specific
instructions. Specific instructions include a group of static low-
level PTX instructions [4], which we refer to as Large-wArp-
inTensive instructions or LATs. Non-LATs are always
executed using sub-warps. LATs, on the other hand, are
executed using large warps built from multiple sub-warps. We
consider load/store instructions from/to global/local/param
space as LATs [5]. DWR’s warp scheduler combines multiple
sub-warps into one large warp upon realizing that all partner
sub-warps are ready to execute.

Synchronization realization. To guarantee that all partner
sub-warps are ready to execute the associated LAT, we enforce
a synchronization barrier just before the LAT. This
synchronization can be realized by extending the ISA and
hardware to support this inter-partner sub-warp
synchronization barrier. Each LAT is transformed to two
instructions: 1) LAT inter-partner sub-warp barrier, and 2)
original LAT instruction. The new instruction operates similar
to intra-thread-block synchronizer. Sub-warp Combiner (SCO)
is used to construct large warps upon issuing an LAT. The sub-
warp synchronizer sends a signal to SCO to identify sub-warps
synchronized on an LAT. Sub-warps stay waiting until the
synchronizer marks them as combine-ready. The combine-
ready status indicates that all sub-warps have reached the LAT
barrier and are ready to be combined and execute the
associated LAT. SCO merges active masks of the combine-
ready sub-warps, issuing one larger warp.

Avoiding unnecessary synchronization. In case partner
sub-warps are diverged into different paths, synchronizing sub-
warps is non-beneficial for coalescing as they execute different
instructions. We employ a small ignore list table (referred to as
ILT) to store program counters which have been detected as
non-beneficial LATs. We avoid synchronization at these LATs.

Ahmad Lashgar
1

a.lashgar@ece.ut.ac.ir

Amirali Baniasadi
2

amirali@ece.uvic.ca

Ahmad Khonsari
1 3

ak@ipm.ir

1School of ECE
University of Tehran

2ECE Department
University of Victoria

3School of Computer Science
Institute for Research in
Fundamental Sciences

Figure 1. (a) Coalescing rate, (b) Idle cycle share and (c) Performance under different warp sizes and DWR. IPC is normalized to a

GPU using 16 threads per warp.

�

��

��

��

��

��

��

��

	�

�

���

BKP CP HSPT MU

C
o

a
le

sc
in

g
 R

a
te

(a)

	 �� �� �� DWR

�%

��%

��%

��%

	�%

���%

BKP CP HSPT MU

S
h

a
re

 o
f

id
le

 c
y

cl
e

s

(b)

	 �� �� �� DWR

�.�

�.�

�.	

�

�.�

�.�

�.�

�.	

BKP CP HSPT MU

N
o

rm
a

li
ze

d
 I
P

C

(c)

	 �� �� �� DWR

III. METHODOLOGY

We modified GPGPU-sim [1] (version 2.1.1b) to model
large warps (beyond 32 threads), memory coalescing similar to
compute compatibility 2.0 devices [5], and DWR. For each
machine (fixed warp size machines or DWR) we model
memory access coalescing over the entire warp threads. Each
SM is a 24-stage 8-wide pipelined processor exploiting 48KB
L1 data cache (64-way, 12-set) and shares 16KB shared
memory among 1024 threads. 16K 32-bit registers per SM are
reserved for thread context. 16 SMs provide peak throughput of
332.8 GFLOPS. Six 64-bit wide memory partitions provide
memory bandwidth of 76.8 GB/s at dual-data rate.

DWR configuration. We assume 32-entry (4-set, 8-way)
per ILT per SM in this study. Smallest warp size is as wide as
SIMD width and the largest warp size is 64 threads.

Benchmarks. In the interest of space we only report for a
representative subset of four benchmarks [3].

IV. RESULTS

In this section we report the number of idle cycles, memory
access coalescing, and performance and compare DWR to
fixed warp size machines.

Memory access coalescing. We measure memory access
coalescing using the following equation:

��������	
���� �
������������������

���������������� !���
 (1)

Figure 1a compares coalescing rates for different warp
sizes. As presented, increasing warp size improves coalescing
rate. This increase starts to diminish for warp sizes beyond 32
for some benchmarks. Fixed 64 threads per warp provides the
highest coalescing rate in most benchmarks.

DWR executes most instructions using 8 threads per warps
to prevent unnecessary synchronizations. To maintain memory
access coalescing of large warps, DWR synchronizes 8 sub-
warps upon memory accesses. In benchmarks where memory
accesses made by neighbor threads is coalescable, DWR
provides far higher coalescing rate compared to an 8-thread per
warp machine (e.g., BKP). Under DWR, MU loses coalescing
rate considerably compared to fixed large warps. In this
benchmark, a considerable portion of LATs is placed in the
ILT. This coalescing loss, however, does not degrade
performance as we show later.

Idle cycles. Figure 1b reports idle cycle frequency for
different warp sizes. Idle cycles are cycles when the scheduler

finds no ready warps in the pool. Small warps compensate
branch/memory divergence by hiding idle cycles in MU. On
the other hand, in BKP, small warps lose many coalescable
memory accesses, increasing memory pressure. This pressure
increases average core idle durations compared to larger warps
in BKP. DWR reduces unnecessary synchronization of entire
warp threads and interleaves sub-warps to hide latency. On
average DWR reduces idle cycles by 26%, 12%, 17% and 25%
compared to processors using fixed 8, 16, 32 and 64 threads
per warp, respectively. As we show Figure 1b, DWR has the
lowest average idle cycle share.

Performance. Figure 1c reports performance. Performance
can improve if an increase in memory access coalescing
outweighs synchronization overhead. Performance can suffer if
the synchronization overhead associated with building large
warps exceeds coalescing memory access gains. Performance
improves in BKP with warp size. Performance is lost in MU as
warp size increases. HSPT performs best under average warp
sizes (16 threads). CP is less sensitive to warp size. In most
benchmarks, DWR performs close to the best performing fixed
warp size machine. This is due to the fact that DWR combines
the benefits of small and large warps.

V. CONCLUSION

In this work we evaluated the performance of Tesla-like
GPUs under different warp sizes. Small warps serve well for
applications suffering from branch divergence. On the other
hand, large warps are more suitable for memory-bounded
workloads taking advantage of memory access coalescing.
Based on these findings, we proposed DWR as a dynamic and
adaptive solution aiming at achieving the benefits associated
with both large and small warps. DWR outperforms fixed 8,
16, 32 and 64 threads per warp machine up to 2.16X, 1.7X,
1.71X and 2.28X, respectively.

REFERENCES

[1] A. Bakhoda et al. Analyzing CUDA workloads using a detailed GPU
simulator. IEEE International Symposium on Performance Analysis of
Systems and Software, 2009.

[2] A. Lashgar and A. Baniasadi. Performance in GPU Architectures:
Potentials and Distances. 9th Annual Workshop on Duplicating,
Deconstructing, and Debunking (WDDD 2011).

[3] A. Lashgar, A. Baniasadi, and A. Khonsari. Dynamic Warp Resizing in
High-Performance SIMT. arXiv:1208.2374v1

[4] NVIDIA Corp. PTX: Parallel Thread Execution ISA Version 2.3.

[5] NVIDIA Corp. CUDA C Programming Guide. Available:
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/d
oc/CUDA_C_Programming_Guide.pdf

