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Abstract—Modern GPUs synchronize threads grouped in warps. 

The number of threads included in each warp (or warp size) 

affects divergence, synchronization overhead, and the efficiency 

of memory access coalescing. Small warps reduce the 

performance penalty associated with branch and memory 

divergence at the expense of a reduction in memory coalescing. 

Large warps enhance memory coalescing significantly but also 

increase branch and memory divergence. Dynamic workload 

behavior, including branch/memory divergence and coalescing, is 

an important factor in determining the warp size returning best 

performance. Based on this observation, we propose Dynamic 

Warp Resizing (DWR). DWR outperforms static warp size 

decisions, up to 2.28X.  
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I.  INTRODUCTION 

GPUs are still far behind their potential peak performance 
as they face two important challenges: branch and memory 
divergence [2]. One of the parameters strongly affecting the 
performance impact of such divergences is the number of 
threads in a warp or warp size. Small warps, i.e., warps as wide 
as SIMD width, reduce the likelihood of branch/memory 
divergence occurrence. On the other hand, small warps reduce 
memory coalescing, which can increase memory stalls. Large 
warps exploit potentially existing memory access localities 
among neighbor threads and coalesce them to a few off-core 
requests. On the negative side, large warps can increase 
serialization and the branch/memory divergence frequency.  

In this paper we evaluate the effect of warp size on GPU 
performance and coalescing rate under general-purpose 
workloads. Accordingly, we propose Dynamic Warp Resizing 
or DWR to achieve performance benefits of both small and 
large warps. We also propose a realistic hardware 
implementation for DWR. More details regarding DWR 
including area overhead, alternative implementations, and 
evaluation under various microarchitectures (including those 
with different SIMD width, and L1 cache size) and more 
benchmarks is reported in our detailed technical report [3].   

II. DYNAMIC WARP RESIZING 

Overview. DWR is an adaptive microarchitectural solution, 
which varies warp size according to program behavior. Warp 
size is initially set to SIMD width (referred to as sub-warp) but 
can expand upon encountering specific program behaviors. 

This dynamic increase in warp size increases memory accesses 
coalescing (often absent from systems using small warps) and 
relies on using barrier synchronizers to synch and combine 
multiple sub-warps. DWR extends the ISA to implement this 
synchronization and warp scheduler to support warp 
combining.  

Synchronization points. DWR groups and issues warps 
with different sizes; i) large warps for specific instructions, and 
ii) sub-warps for other instructions. Partner sub-warps are 
synchronized to build one large warp to execute the specific 
instructions. Specific instructions include a group of static low-
level PTX instructions [4], which we refer to as Large-wArp-
inTensive instructions or LATs. Non-LATs are always 
executed using sub-warps. LATs, on the other hand, are 
executed using large warps built from multiple sub-warps. We 
consider load/store instructions from/to global/local/param 
space as LATs [5]. DWR’s warp scheduler combines multiple 
sub-warps into one large warp upon realizing that all partner 
sub-warps are ready to execute.  

Synchronization realization. To guarantee that all partner 
sub-warps are ready to execute the associated LAT, we enforce 
a synchronization barrier just before the LAT. This 
synchronization can be realized by extending the ISA and 
hardware to support this inter-partner sub-warp 
synchronization barrier. Each LAT is transformed to two 
instructions: 1) LAT inter-partner sub-warp barrier, and 2) 
original LAT instruction. The new instruction operates similar 
to intra-thread-block synchronizer. Sub-warp Combiner (SCO) 
is used to construct large warps upon issuing an LAT. The sub-
warp synchronizer sends a signal to SCO to identify sub-warps 
synchronized on an LAT. Sub-warps stay waiting until the 
synchronizer marks them as combine-ready. The combine-
ready status indicates that all sub-warps have reached the LAT 
barrier and are ready to be combined and execute the 
associated LAT. SCO merges active masks of the combine-
ready sub-warps, issuing one larger warp.  

Avoiding unnecessary synchronization. In case partner 
sub-warps are diverged into different paths, synchronizing sub-
warps is non-beneficial for coalescing as they execute different 
instructions. We employ a small ignore list table (referred to as 
ILT) to store program counters which have been detected as 
non-beneficial LATs. We avoid synchronization at these LATs.  
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Figure 1. (a) Coalescing rate, (b) Idle cycle share and (c) Performance under different warp sizes and DWR. IPC is normalized to a 

GPU using 16 threads per warp. 
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III. METHODOLOGY 

We modified GPGPU-sim [1] (version 2.1.1b) to model 
large warps (beyond 32 threads), memory coalescing similar to 
compute compatibility 2.0 devices [5], and DWR. For each 
machine (fixed warp size machines or DWR) we model 
memory access coalescing over the entire warp threads. Each 
SM is a 24-stage 8-wide pipelined processor exploiting 48KB 
L1 data cache (64-way, 12-set) and shares 16KB shared 
memory among 1024 threads. 16K 32-bit registers per SM are 
reserved for thread context. 16 SMs provide peak throughput of 
332.8 GFLOPS. Six 64-bit wide memory partitions provide 
memory bandwidth of 76.8 GB/s at dual-data rate.  

DWR configuration. We assume 32-entry (4-set, 8-way) 
per ILT per SM in this study. Smallest warp size is as wide as 
SIMD width and the largest warp size is 64 threads.  

Benchmarks. In the interest of space we only report for a 
representative subset of four benchmarks [3].  

IV. RESULTS 

In this section we report the number of idle cycles, memory 
access coalescing, and performance and compare DWR to 
fixed warp size machines. 

Memory access coalescing. We measure memory access 
coalescing using the following equation: 
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      (1) 

Figure 1a compares coalescing rates for different warp 
sizes. As presented, increasing warp size improves coalescing 
rate. This increase starts to diminish for warp sizes beyond 32 
for some benchmarks. Fixed 64 threads per warp provides the 
highest coalescing rate in most benchmarks.  

DWR executes most instructions using 8 threads per warps 
to prevent unnecessary synchronizations. To maintain memory 
access coalescing of large warps, DWR synchronizes 8 sub-
warps upon memory accesses. In benchmarks where memory 
accesses made by neighbor threads is coalescable, DWR 
provides far higher coalescing rate compared to an 8-thread per 
warp machine (e.g., BKP). Under DWR, MU loses coalescing 
rate considerably compared to fixed large warps. In this 
benchmark, a considerable portion of LATs is placed in the 
ILT. This coalescing loss, however, does not degrade 
performance as we show later.  

Idle cycles. Figure 1b reports idle cycle frequency for 
different warp sizes. Idle cycles are cycles when the scheduler 

finds no ready warps in the pool. Small warps compensate 
branch/memory divergence by hiding idle cycles in MU. On 
the other hand, in BKP, small warps lose many coalescable 
memory accesses, increasing memory pressure. This pressure 
increases average core idle durations compared to larger warps 
in BKP. DWR reduces unnecessary synchronization of entire 
warp threads and interleaves sub-warps to hide latency. On 
average DWR reduces idle cycles by 26%, 12%, 17% and 25% 
compared to processors using fixed 8, 16, 32 and 64 threads 
per warp, respectively. As we show Figure 1b, DWR has the 
lowest average idle cycle share.  

Performance. Figure 1c reports performance. Performance 
can improve if an increase in memory access coalescing 
outweighs synchronization overhead. Performance can suffer if 
the synchronization overhead associated with building large 
warps exceeds coalescing memory access gains. Performance 
improves in BKP with warp size. Performance is lost in MU as 
warp size increases. HSPT performs best under average warp 
sizes (16 threads). CP is less sensitive to warp size. In most 
benchmarks, DWR performs close to the best performing fixed 
warp size machine. This is due to the fact that DWR combines 
the benefits of small and large warps.  

V. CONCLUSION 

In this work we evaluated the performance of Tesla-like 
GPUs under different warp sizes. Small warps serve well for 
applications suffering from branch divergence. On the other 
hand, large warps are more suitable for memory-bounded 
workloads taking advantage of memory access coalescing. 
Based on these findings, we proposed DWR as a dynamic and 
adaptive solution aiming at achieving the benefits associated 
with both large and small warps. DWR outperforms fixed 8, 
16, 32 and 64 threads per warp machine up to 2.16X, 1.7X, 
1.71X and 2.28X, respectively.  
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