
Inter-Warp Instruction Temporal Locality in Deep-

Multithreaded GPUs

Ahmad Lashgar1, Amirali Baniasadi
2
, and Ahmad Khonsari

1,3

1 School of Electrical and Computer Engineering, University College of Engineering,

University of Tehran, Tehran, Iran
2 Electrical and Computer Engineering Department, University of Victoria,

Victoria, British Columbia, Canada
3 School of Computer Science, Institute for Research in Fundamental Sciences,

Tehran, Iran

a.lashgar@ece.ut.ac.ir, amirali@ece.uvic.ca, ak@ipm.ir

Abstract. GPUs employ thousands of threads per core to achieve high

throughput. These threads exhibit localities in control-flow, instruction and data

addresses and values. In this study we investigate inter-warp instruction

temporal locality and show that during short intervals a significant share of

fetched instructions are fetched unnecessarily. This observation provides

several opportunities to enhance GPUs. We discuss different possibilities and

evaluate filter cache as a case study. Moreover, we investigate how variations in

microarchitectural parameters impacts potential filter cache benefits in GPUs.

Keywords: Multi-threaded processors, Energy-efficient design, Pipeline front-

end

1 Introduction

Innovative microarchitectural solutions have used locality to enhance processor

performance in several ways (e.g., caches, branch predictors, etc). Many studies have

investigated locality in CPUs. Locality in GPUs [3], however, has not received the

same level of attention.

In this study we explore Inter-warp Instruction Temporal Locality (or simply ITL).

ITL represents our observation that a small number of static instructions account for a

significant portion of dynamic instructions fetched and decoded during short intervals

and within the same stream multiprocessor. We investigate ITL among threads and

show how GPUs come with ample ITL.

An important issue contributing to ITL in GPUs is deep multi-threading. GPUs

achieve high throughput by employing and interleaving thousands of threads per core.

Threads are grouped into coarser independent schedulable elements (called warps) to

achieve both scheduling simplicity and SIMD efficiency. The warp scheduler issues

instructions from different warps back-to-back filling the pipeline effectively. This

pipeline organization amplifies ITL by fetching the same instruction for all warps

during short intervals.

Moreover, we have observed that the chances of accessing a recently fetched

instruction again are higher in GPUs compared to CPUs. For example, our evaluation

shows the likelihood of fetching the same instruction within a 64-cycle period is 67%

in CPUs. This grows to 82% in GPUs (see Section 5.1 for methodology).

Each generation of GPUs has superseded the precedent generation by increasing

the number of executed warps (also referred to as multi-threading depth) and SIMD

width. It is expected that deep multithreading will continue to serve an important role

in performance growth in GPUs in upcoming years. Therefore, we expect the current

trend in ITL in GPUs to continue in near future.

In this work, we list different opportunities to improve energy efficiency in GPUs

by exploiting ITL. In particular and as a case study, we evaluate energy savings

achievable under filter caches [12] in GPUs. As we show, employing a filter cache

eliminates a significant share of the instruction cache accesses, improving the fetch

engine’s energy efficiency.

The rest of the paper is organized as follows. In Section 2 we study related works.

In Section 3 we present the pipeline front-end of GPU microarchitectures and review

ITL. We investigate our case study in Section 4. We present experimental setup and

simulation results in Section 5. Finally, in Section 6 we offer concluding remarks.

2 Related Works

Locality studies (data or instruction) in GPUs have received less attention

compared to CPUs. Collange et al [5] studied data locality in registers and found that

register values often appear uniform across threads of a warp. They introduced

dynamic mechanisms detecting up to 19% of the register values as uniform. Their

mechanism can be exploited to reduce the number of accesses to the register file or

reduce the size of vector register file. Gebhart et al [7] observed that the written

registers are often read last within three instructions after the write. They introduce a

register file cache to reduce the number of accesses to the conventional power-hungry

register file. Moreover, to prevent heavy contention on register file cache, they

introduce a two-level warp scheduler. At the first-level they maintain a few active

warps. At the second-level other inactive warps are stored. Each warp at the first-level

has a few registers in the cache. The scheduler issues instructions from these warps

for as long as possible. Once a warp at the first-level stalls on the completion of a

long latency instruction (due to operand dependency), the scheduler replaces it with a

ready warp from the second-level. The mechanism effectively saves 36% of register

file power, which translates to 3.8% of chip dynamic power.

Collagne et al. [4] stressed different NVIDIA GPUs by various workloads to reveal

the effect of workload on GPU power. They evaluated power for different number of

SIMD processors and reported energy per memory access and energy per ALU

instruction. Hong and Kim [10] observed that the optimal performance/watt differs

for various types of workloads, depending on the number of active cores. They

introduced a performance-power model to predict the optimal number of cores for

achieving the best performance/watt dynamically. They also reported the contribution

of each architectural module to the dynamic power. They found that GPU’s front-end

(fetch, decode, and scheduling) accounts for 18% of GPU’s dynamic power. Zhang et

Fig.

al. [21] used a static regression

AMD/ATI GPUs. The analysis shows which units are the most critical to perfor

and power in GPUs. They found that the fetch engine accounts for

power and is the 4th among the most important parameters contributing to GPU

power. VLIW usage, ALU instructions, and global memory accesses are the other top

important parameters.

power in GPUs . In the hardware approach, he used external devices to measure GPU

power. In the software approach, NVIDIA NVML library is employed to measure

power using GPU performance coun

3 Observation

3.1 Background

We assume a GPU

similar to NVIDIA Tesla

six memory controllers through an on

SM maintains the context of

coarser independent-schedulable

SIMD lock-step manner.

Each SM employs a

model the pipeline front

Figure 1, SM pipeline front

Instruction Buffer (IB), and Instruction

instructions from concurrent warps. IB buffers the instruction

dependencies. ID fetches the operands for dependency

them to the execution pipeline. Below we review each stage in more details.

Instruction Fetch.

PC, followed by fetching the corresponding instruction through I

warp scheduler uses the round

from the instruction pool.

Fig. 1. The microarchitecture of SM’s front-end.

used a static regression-based model to analyze the performance and power of

AMD/ATI GPUs. The analysis shows which units are the most critical to perfor

They found that the fetch engine accounts for 12% of the GPU

th among the most important parameters contributing to GPU

power. VLIW usage, ALU instructions, and global memory accesses are the other top

. Kasichayanula [11] evaluated two schemes for measuring

power in GPUs . In the hardware approach, he used external devices to measure GPU

power. In the software approach, NVIDIA NVML library is employed to measure

power using GPU performance counters.

We assume a GPU-like SIMT (Single-Instruction Multiple-Thread) accelerator

similar to NVIDIA Tesla. 16 8-wide stream multiprocessors (SM) are connected to

six memory controllers through an on-chip crossbar interconnection network. Each

SM maintains the context of 1024 concurrent threads. These threads are grouped into

schedulable warps. Threads within a warp are executed

step manner.

Each SM employs a 24-stage SIMD pipeline for most instructions. In this work, we

pipeline front-end according to NVIDIA’s patents [14, 6, 15]. As shown in

SM pipeline front-end consists of three stages: Instruction Fetch (IF),

n Buffer (IB), and Instruction Dispatch (ID). IF selects and fetches

from concurrent warps. IB buffers the instructions to resolve data

dependencies. ID fetches the operands for dependency-free instructions and i

them to the execution pipeline. Below we review each stage in more details.

 IF uses per warp logic to determine the next warp instruction

followed by fetching the corresponding instruction through I-Cache. The baseline

scheduler uses the round-robin policy among warps to select the next instruction

from the instruction pool.

the performance and power of

AMD/ATI GPUs. The analysis shows which units are the most critical to performance

 of the GPU

th among the most important parameters contributing to GPU

power. VLIW usage, ALU instructions, and global memory accesses are the other top

evaluated two schemes for measuring

power in GPUs . In the hardware approach, he used external devices to measure GPU

power. In the software approach, NVIDIA NVML library is employed to measure

accelerator

are connected to

chip crossbar interconnection network. Each

These threads are grouped into

. Threads within a warp are executed in an

In this work, we

]. As shown in

truction Fetch (IF),

). IF selects and fetches

to resolve data

free instructions and issues

warp instruction

Cache. The baseline

the next instruction

Fig. 2. Fetch redundancy among concurrent warps of SMs during 16, 32, and 64
recent fetches for different benchmarks.

�%

��%

��%

��%

��%

���%

B
F

S

B
K

P

C
P

D
Y

N

F
W

A
L

G
A

S

H
S

P
T

LP
S

M
P

�

M
P

M
T

M

M
U

�

M
U

N
N

C

N
N

N
Q

U

N
W

R
A

Y

S
C

N

S
R

�

S
R

�

F
e

tc
h

 R
e

d
u

n
d

a
n

cy

<= �� �� < AND <= �� �� < AND <= ��

IF resolves control dependences among warp instructions using the PC logic

module. This module stalls the warp upon a pending branch. PC logic also determines

the next active PC of the warp. IF takes one cycle to select the PC and fetch the

corresponding instruction from I-Cache to the IB stage if I-Cache hits.

After an instruction is fetched, the warp scheduler sends it to an empty field in the

instruction buffer in the next cycle. This empty field is reserved at fetch time and

therefore the fetched instruction always finds an empty instruction buffer entry.

Instruction Buffer. Data dependency is resolved through scoreboarding.

Instructions communicate only through the register file and operand forwarding is not

supported. Once the scoreboard marks the instruction as ready, the scheduler can

select the instruction to proceed. The instruction scheduler used at this stage uses

round-robin policy.

Instruction Dispatch. ID buffers collect register operands from highly banked

register files [15] and issue instructions to the pipeline’s back-end as soon as all

operands are buffered.

We assume a scoreboard structure similar to [6]. Each scoreboard entry is

associated with a different warp and points to the registers having a pending value.

This information is maintained at the register region granularity. Each register region

is identified using a base (register ID) and an offset (number of register after the

base). Each scoreboard entry can keep track of 6 register regions. Scoreboard stalls an

instruction due to a RAW/WAR dependency if the input/output operands of the

instruction belong to a register region in the warp’s scoreboard entry. Note that a warp

is stalled if all of its register regions are taken in the scoreboard. Therefore increasing

the number of register regions reduces the probability of warp stalls. Our evaluation

shows that six register regions per warp are enough to achieve maximum ILP under

the evaluated workloads and the employed in-order pipeline. Once an instruction

commits, the register region is released.

3.2 ITL

ITL stems from the fact that a few static instructions account for a significant

portion of instructions fetched and decoded among different warps during short

intervals and within the same warp scheduler. SMs often execute concurrent warps

from the same kernel code. Moreover, the scheduler keeps the warps at the same pace

to improve cache locality [13], further increasing ITL.

To provide better understanding we measure and report fetch redundancy as an

indication of ITL. Fetch redundancy reports the percentage of instructions already

fetched by other currently active warps recently. We measure fetch redundancy in

different recency windows (16, 32, and 64). We present our findings in Figure 2.

Average fetch redundancy is 53%, 59%, and 67%for recency window sizes of 16,

32, and 64, respectively. Highly parallel benchmarks, which employ a high number of

blocks per grid with a few branch divergences (e.g., CP, HSPT, and NN), show higher

fetch redundancy. Other benchmarks, which have fewer concurrent warps (e.g., GAS,

SR2, and NW), or more diverging branches (e.g., MP2, MP, MU2, MU, NQU),

exhibit less fetch redundancy.

3.3 Exploiting ITL

In this section, we briefly go over possible power and performance benefits

achievable using ITL in GPUs.

Fetch/decode bypassing. Loop buffering stores the decoded word of loop

instructions in a dedicated buffer and skips fetch/decode as long as the thread

proceeds inside the loop [9]. The challenge in CPUs is to find loop boundaries

effectively and fitting the entire loop in the buffer. GPUs can take advantage of

bypassing by storing the most recent decoded warp instructions and reusing them later

by other warps.

Reducing the size of instruction buffer. We have observed that for ~42% of

instruction fetches, the corresponding decoded instruction already exists in the

instruction buffer (in the entries dedicated to other warps). The instruction

fetch/decode process can be bypassed by reading the decoded word from the

instruction buffer. A more efficient alternative is to share similar entries among warps

to reduce instruction buffer size.

Reducing accesses to I-Cache. ITL can be used to filter accesses to I-Cache. This

can be done by using a filter cache or row buffer [12]. Filter cache uses temporal

locality to reduce cache miss rate by storing the most recent fetched instructions. Row

buffer stores the last accessed I-Cache block (row) and serves fetch requests for

blocks residing in the buffer. In the next section we evaluate energy saving

opportunities provided by filter cache.

4 Using ITL Case Study in GPUs: Filter Cache

Exploiting filter caches (FC) in current GPUs requires minor modifications to the

baseline pipeline front-end (described in section 3.1). FC is probed using the next

program counter (PC) to fetch. If the instruction look-up hits during FC tag check, the

Fig. 3. Modifications
enhanced SM.

Table 1. Front-end

I-Cache tag

I-Cache data

Instruction Buf.

Scoreboard

Operand Buf.

FC tag (32-entry)

FC data (32-entry)

FC tag (16-entry)

FC data (16-entry)

following I-Cache access is prevented

conventional path from I

Microarchitecture.

modifications are highlighted over the baseline pipeline microarchitecture. FC is a

cache-like structure consisting of two parts, i.e., FC check and FC fetch. FC check is

similar to a tag array and compares the incoming PC tag

Upon a match, FC forwards the bypass signal to the fetch circuit and prevents

instruction fetching. Bypass signal activates FC fetch and sends the instructions

associated with the matched PC to the next stage through the mult

mismatch, the front-end follows the conventional approach.

Timing. Using an FC

check hit, fetch stage faces the following delay:

(Warp scheduling) + (FC check) + (FC fetch) + (MUX)

Upon FC mismatch, the delay is:

(Warp scheduling) + (FC check) + (I

 made to the instruction fetch stage to implement

end area, leakage power, read/write energy, and access delay
measured by CACTI [16].

Area

(µm2)

Leakage

(mW)

Energy per

R/W (pJ) Delay (ps)

229 0.03 0.13 115.94

18204 1.78 4.30 221.20

2600 0.16 1.00 137.59

6921 0.24 1.57 162.17

24173 0.53 4.16 174.05

entry) 266 0.03 0.14 117.28

entry) 2229 0.11 0.81 161.76

entry) 155 0.02 0.10 105.47

entry) 1337 0.05 0.57 143.38

Cache access is prevented, else the instruction is fetched through the

path from I-Cache. Missing instructions update FC later.

Microarchitecture. Figure 3 shows an FC-enhanced front-end design. The

modifications are highlighted over the baseline pipeline microarchitecture. FC is a

like structure consisting of two parts, i.e., FC check and FC fetch. FC check is

similar to a tag array and compares the incoming PC tags against earlier stored tag

a match, FC forwards the bypass signal to the fetch circuit and prevents

instruction fetching. Bypass signal activates FC fetch and sends the instructions

associated with the matched PC to the next stage through the multiplexer. Upon a

end follows the conventional approach.

Using an FC imposes two delays: FC tag check and multiplexer. Upon FC

check hit, fetch stage faces the following delay:

(Warp scheduling) + (FC check) + (FC fetch) + (MUX)

Upon FC mismatch, the delay is:

(Warp scheduling) + (FC check) + (I-Cache) + (MUX)

the instruction fetch stage to implement an FC-

area, leakage power, read/write energy, and access delay

115.94

221.20

137.59

162.17

174.05

117.28

161.76

105.47

143.38

is fetched through the

end design. The

modifications are highlighted over the baseline pipeline microarchitecture. FC is a

like structure consisting of two parts, i.e., FC check and FC fetch. FC check is

s against earlier stored tags.

a match, FC forwards the bypass signal to the fetch circuit and prevents

instruction fetching. Bypass signal activates FC fetch and sends the instructions

iplexer. Upon a

two delays: FC tag check and multiplexer. Upon FC

Table 2. Benchmark characteristics. CTA/SM indicates the maximum number of
concurrent blocks per SM which is limited by both parallelism and occupancy.

Abbr. Name and Suite Grid Size Block Size #Insn CTA/SM

BFS BFS Graph [2] 16x(8) 16x(512) 1.4M 1

BKP Back Propagation [2] 2x(1,64) 2x(16,16) 2.9M 4

CP Coulumb Poten. [19] (8,32) (16,8) 113M 8

DYN Dyn_Proc [2] 13x(35) 13x(256) 64M 4

FWAL Fast Wal. Trans. [18]

6x(32)

3x(16)
(128)

7x(256)

3x(512)
11M 2, 4

GAS Gaussian Elimin. [2] 48x(3,3) 48x(16,16) 9M 1

HSPT Hotspot [2] (43,43) (16,16) 76M 2

LPS Laplace 3D [1] (4,25) (32,4) 81M 6

MP2 MUMmer-GPU++ [8] big (196) (256) 139M 2

MP
MUMmer-GPU++ [8]

small
(1) (256) 0.3M 1

MTM Matrix Multiply [18] (5,8) (16,16) 2.4M 4

MU2 MUMmer-GPU [2] big (196) (256) 75M 4

MU MUMmer-GPU [2] small (1) (100) 0.2M 1

NNC Nearest Neighbor [2] 4x(938) 4x(16) 5.9M 8

NN Neural Network [1]

(6,28)
(25,28)

(100,28)

(10,28)

(13,13)

(5,5)
2x(1)

68M 5, 8

NQU N-Queen [1] (256) (96) 1.2M 1

NW Needleman-Wun. [2]

2x(1)

…

2x(31)
(32)

63x(16) 12M 2

RAY Ray Tracing [1] (16,32) (16,8) 64M 3

SCN Scan [18] (64) (256) 3.6M 4

SR1 Speckle Reducing [2] big 4x(8,8) 4x(16,16) 9.5M 2, 3

SR2 Speckle Reducing [2] small 4x(4,4) 4x(16,16) 2.4M 1

Our study shows that MUX delay is negligible compared to the rest and can be

ignored. Table 1 reports the access latency of FC tag, FC data, I-Cache tag, and I-

Cache data. IF delay for FC check hit/miss scenario is 0.28ns/0.45ns plus warp

scheduling delay. The evaluated front-end runs under 1.3 GHz (0.77ns clock period).

For warp scheduling delays below 0.32 ns (0.77 ns - 0.45 ns), FC-enhanced SM does

not impose extra cycles. Under the pessimistic scenario where warp scheduling’s

delay exceeds 0.32 ns, IF should be pipelined into two stages. Under such

circumstances, warp scheduling and FC check are done at the first stage. The second

stage decides whether to fetch the instruction from FC or I-Cache. This design

extends the pipeline depth by a cycle compared to the baseline resulting in a

performance loss less than 1%.

Hardware Overhead. FC-enhanced SM requires two auxiliary structures. First, a

multiplexer is used to select between two 64-bit instruction words. Second, additional

storage is needed for the FC module to temporarily store a small number of

instructions. Our simulations show that a 32-entry FC captures a significant share of

Fig. 4. SM’s front-end energy
breakdown.

I-Cache tag

I-Cache data

Instruction buffer

Scoreboard

Operand Collector and buffering

fetch redundancy. The

conventional pipeline front

5 Experiments

5.1 Methodology

We used GPGPU-sim v

Section 3. We configured GPGPU

have extended GPGPU

We extended the simulator to model

instructions per line). On a cache miss, the

access the cache block in global memory. Requests from different warps are merged

through I-Cache per warp MSHRs. We used benchmarks from Rodinia benchmark

suite [2], CUDA SDK

GPGPU-sim. We also

alignment program. Table

We report both static and dynamic power

power dissipation, area, and latency of

under 32nm technology. For small sized modules, like the operand collector, we

scaled the number linearly to

larger caches (keeping I/O bits, associativity, an

CACTI to find the line’s parameters.

5.2 Experimental R

In this section, we first report the energy breakdown of the baseline architecture.

Then we report the percentage of I

end energy

Operand Collector and buffering

Table 3. Baseline configurations for GPGPU

NoC

#SMs : #Memory Ctrls

#SM Sharing a Network Interface

Clocking

Core 1300

Interconnect 650

DRAM 800

Memory

#Banks Per Memory Ctrls

DRAM Scheduling Policy

SM

Warp size : SIMD width 32

Thread/SM 1024

Register file : Shared memory
64KB

16KB

The 32-entry FC imposes 4.7% area overhead compared to a

conventional pipeline front-end.

sim v2.1.1b [1] to model the baseline architecture described in

We configured GPGPU-sim with the parameters shown in Table

have extended GPGPU-sim to model the discussed FC-enhanced pipeline front

We extended the simulator to model 4KB 4-way 4-set [20] I-Cache per SM (

instructions per line). On a cache miss, the associated warp is stalled for 300

access the cache block in global memory. Requests from different warps are merged

warp MSHRs. We used benchmarks from Rodinia benchmark

CUDA SDK 2.3 [18], Parboil [19], and the benchmarks distributed

We also included the MUMmerGPU++ [8] third-party sequence

Table 3 shows benchmarks’ characteristics.

We report both static and dynamic power. We use CACTI 6.5 [16] to estimate the

power dissipation, area, and latency of an FC-enhanced SM compared to the baseline

nm technology. For small sized modules, like the operand collector, we

scaled the number linearly to extrapolate the parameters. We extracted 6 samples of

larger caches (keeping I/O bits, associativity, and other parameters the same) from

CACTI to find the line’s parameters.

Results

In this section, we first report the energy breakdown of the baseline architecture.

percentage of I-Cache accesses filtered by FC and the associ

configurations for GPGPU-sim.

16 : 6

2

1300 MHz

 MHz

 MHz

8

FCF

S

32 : 8

1024

KB :

KB

 area overhead compared to a

to model the baseline architecture described in

arameters shown in Table 3. We

enhanced pipeline front-end.

(32 8-byte

300 cycles to

access the cache block in global memory. Requests from different warps are merged

warp MSHRs. We used benchmarks from Rodinia benchmark

], and the benchmarks distributed with

party sequence

] to estimate the

enhanced SM compared to the baseline

nm technology. For small sized modules, like the operand collector, we

 samples of

d other parameters the same) from

In this section, we first report the energy breakdown of the baseline architecture.

Cache accesses filtered by FC and the associated

Table 4. FC energy saving compared to the baseline as measured by CACTI [16]

FC

hit rate

Baseline

I-Cache energy

(nJ)

I-Cache + FC

energy

(nJ)

Front-end

energy-saving

using FC

BFS 97% 644.11 270.93 12%

BKP 96% 500.14 216.86 9%

CP 100% 16532.20 6616.15 7%

DYN 93% 9882.86 4435.14 8%

FWAL 96% 1730.16 740.77 8%

GAS 87% 1218.70 592.08 7%

HSPT 89% 12076.70 5676.64 8%

LPS 83% 14955.05 7625.97 8%

MP2 33% 67872.12 57354.82 2%

MP 30% 161.40 139.78 2%

MTM 95% 347.37 153.66 8%

MU2 49% 43099.85 31846.11 5%

MU 39% 100.32 81.10 4%

NNC 76% 1718.39 963.81 10%

NN 99% 132820.86 53780.92 19%

NQU 50% 217.81 159.97 5%

NW 70% 5627.29 3356.63 10%

RAY 76% 10520.69 5945.77 6%

SCN 97% 562.47 240.70 9%

SR1 87% 1430.76 699.11 8%

SR2 84% 368.94 189.63 7%

energy savings. Finally, we evaluate filter caches under various microarchitectural

changes.

Energy Breakdown. Figure 4 presents the energy breakdown for the SM pipeline

front-end for the evaluated workloads. The operand collector and the associated

buffering are the most energy consuming parts accounting for 40% of dynamic power.

I-Cache, which is the target of this case study, is second, accounting for 27%.

FC Hit Rate. Table 4 reports FC hit rate, which is equal to percentage of the I-

Cache accesses filtered. FC check hit rate reaches a maximum of ~100%. Hit rate is

above 60% for coherent control-flow compute-intensive workloads like CP, DYN,

HSPT, LPS, and MTM. FC shows lower hit rate in control-flow intensive workloads

with high branch divergence (e.g., MU2, and MP2). This is due to the fact that these

benchmarks exhibit lower ITL as warps often follow different diverging paths. Hit

rate is also low for workloads with limited warp-level parallelism (MU, NW, MP,

SR2, and NQU). Lower number of concurrent warps reduces the chance of instruction

reuse and consequently FC hit rate.

Energy Saving. Table 1 reports die area, leakage power, read/write energy per

access, and access latency for modules with significant energy contribution in the

pipeline front-end. We assume two ports per I-Cache and FC caches, one read port

and one write port. Using a 32-entry FC cache, front-end static power increases by

5.0%. Assuming 16KB register file (7.46 mW leakage), 16KB shared data cache (5.80

Fig. 5. Sensitivity for a) FC hit rate and b) front-end energy reduction to the
multithreading depth (1024 and 512), warp scheduling policy (RR for round-robin
and 2Lev for two-level scheduler), and FC size (32 and 16) for different
benchmarks.

�%

��%

��%

��%

��%

���%

CP HSPT LPS MP MTM NN RAY SCN avg

F
C

 H
it

 R
a

te

(a)

����Thd-RR-��FC ����Thd-�Lev-��FC ����Thd-RR-��FC ����Thd-�Lev-��FC

4��Thd-RR-��FC 4��Thd-�Lev-��FC 4��Thd-RR-��FC 4��Thd-�Lev-��FC

�%

4%

��%

�4%

��%

�4%

��%

CP HSPT LPS MP MTM NN RAY SCN avg

F
ro

n
t-

e
n

d
 E

n
e

rg
y

S
a

v
in

g

(b)

mW leakage), 5KB texture cache (1.93 mW leakage), and 2KB L1 constant cache

(0.82 mW leakage) per SM, FC imposes less than 0.7% leakage power per SM.

In Table 4, we report the dynamic energy consumption of the baseline I-Cache

compared to the FC-enhanced design (I-Cache + FC). As reported, FC can reduce I-

Cache energy from 13% (MP) to 60% (CP). This translates to from 2% (MP

benchmark) to 19% (NN benchmark) of the overall pipeline front-end dynamic

energy reduction. Assuming an 18% overall energy share for the front-end [10], an

FC-enhanced GPU saves up to 3.4% of the dynamic energy.

Sensitivity Analysis. In this section we report FC hit rate and energy reduction

under variations in multithreading depth, FC size, and warp scheduler. We evaluate

filter caches for 512 threads per SM, 16-entry FC, and a two-level warp scheduler

[17] as an alternative to our baseline 32-entry FC, 1024 threads per SM, and round-

robin warp scheduler.

Employing the two-level scheduler improves memory latency hiding. Two-level

scheduler divides the warps into multiple fetch groups and gives the highest priority

to the warps belonging to the fetch group of the last issued warp. This mechanism can

hide the memory accesses made in one fetch group using the computations of other

fetch groups. We choose 8 warps per fetch group to achieve maximum latency hiding.

Figure 5 reports FC hit rate and front-end energy reduction for different

combinations: multithreading depth (1024, and 512), FC sizes (32, and 16), and warp

schedulers (RR, and 2Lev). In the interest of space we report average and a few

representative benchmarks.

Multithreading Depth. Reducing multithreading depth is expected to reduce ITL.

CP, LPS, and SCN are among the benchmarks that have enough parallelism to run

more than 512 threads per SM. As reported, reducing multithreading depth to 512

threads reduces FC hit rate up to 6% (in LPS) compared to 1024 threads per SM but

has minor impact on energy reduction.

Warp Scheduler. We expect to see lower FC hit rate under 2Lev compared to RR

under fixed FC size and multithreading depth. This is because 2Lev keeps the warps

of different fetch groups at different paces reducing the ITL. As reported, 2Lev often

impacts FC hit rate but insignificantly.

FC Size. Among the parameters studied here, FC size has the highest impact.

Lower FC size reduces FC hit rate. However, smaller FC comes with lower energy

overhead. As reported, a 16-entry FC has a lower FC hit rate (on average of 9% to

10% percent) compared to a 32-entry. However, since the 16-entry consumes less

energy, it still shows higher energy reduction.

6 Conclusion

In this study we showed that there is high temporal instruction locality in GPU

microarchitectures for general-purpose computations. Concurrent warps fetch and

decode the same instruction frequently providing an opportunity to design a more

efficient pipeline front-end. We suggested different possibilities to exploit this locality

to improve performance, energy, and area. We investigated filter cache as a case

study. We found that a simple direct-map filter cache per SM can eliminate 30% to

~100% of I-Cache requests reducing pipeline front-end energy up to 19%. We have

evaluated our results under various microarchitectural changes including

multithreading depth, warp scheduling, and filter cache size.

7 Acknowledgement

The authors like to thank anonymous reviewers. This work was partially supported

by School of Computer Science at Institute for Research in Fundamental Sciences

(IPM).

References

1. A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, T.M. Aamodt. “Analyzing CUDA

workloads using a detailed GPU simulator.” In Proc. of ISPASS 2009. 163 - 174.

2. S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, L. Sang-Ha, K. Skadron. "Rodinia: A

benchmark suite for heterogeneous computing." In Proc. of IEEE International Symposium

on Workload Characterization (IISWC). 2009. 44 – 54.

3. S. Collagne. “Exploiting all forms of parallel locality in many-thread architectures.” ALF

research group seminar, IRISA. Rennes, December 21, 2011.

4. S. Collange, D. Defour, A. Tisserand. “Power Consumption of GPUs from a Software

Perspective.” Proc. of the 9th International Conference on Computational Science (ICCS)

2009. pp 914-923.

5. S. Collange, D. Defour, Y. Zhang. "Dynamic detection of uniform and affine vectors in

GPGPU computations." In Proc. of Euro-Par 2009. 46-55.

6. B. W. Coon, P. C. Mills, S. F. Oberman, M. Y. Siu. “Tracking register usage during

multithreaded processing using a scoreboard.” United States Patent, Patent number:

7434032.

7. M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm, K.

Skadron. “Energy-efficient mechanisms for managing thread context in throughput

processors.” In Proc. of the 38th annual international symposium on Computer architecture

(ISCA). 2011. 235-246.

8. A. Gharaibeh, M. Ripeanu. “Size Matters: Space/Time Tradeoffs to Improve GPGPU

Applications Performance.” In Proc. of ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis. 2010. 1-12.

9. M. Hiraki, R. S. Bajwa, H. Kojima, D. J. Gorny, K. Nitta, A. Shri. “Stage-skip pipeline: a

low power processor architecture using a decoded instruction buffer.” International

Symposium on Low Power Electronics and Design. 1996. 353-358.

10. S. Hong, H. Kim. “An Integrated GPU Power and Performance Model." In Proc. of ISCA

2010. 280-289.

11. K. K. Kasichayanula. Power Aware Computing on GPUs. Master Thesis Dissertation,

University of Tennessee, Knoxville, May 2012.

12. J. Kin, M. Gupta, W. H. Mangione-Smith. "The filter cache: an energy efficient memory

structure." In Proc. of MICRO 1997. 184-193.

13. J. E. Lindholm, B. W. Coon, J. Wierzbicki, R. J. Stoll, S. F. Oberman. Credit-Based

Streaming Multiprocessor Warp Scheduling. United States Patent, application number:

12/885,299

14. J. E. Lindholm, B. W. Coon, S. S. Moy. Across-thread out-of-order instruction dispatch in

a multithreaded microprocessor. United States Patent, Patent number: 7676657.

15. S. Liu, J. E. Lindholm, M. Y. Siu, B. W. Coon, S. F. Oberman. Operand collector

architecture. United States Patent, Patent number: 7834881.

16. N. Muralimanohar, R. Balasubramonian, N. Jouppi. “Optimizing NUCA Organizations

and Wiring Alternatives for Large Caches with CACTI 6.0.” In Proc. of MICRO 2007. 3-

14.

17. V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, Y. N. Patt.

"Improving GPU performance via large warps and two-level warp scheduling." In Proc. Of

MICRO 2011. 308-317

18. NVIDIA Corp. NVIDIA CUDA SDK 2.3.

19. J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W. Chang, N. Anssari, G. D. Liu, W.

M. W. Hwu. "Parboil: A Revised Benchmark Suite for Scientific and Commercial

Throughput Computing." IMPACT Technical Report, 2012.

20. H. Wong, M. M. Papadopoulou, M. Sadooghi-Alvandi, A. Moshovos. "Demystifying GPU

microarchitecture through microbenchmarking." In Proc. of ISPASS 2010. 235 - 246.

21. Y. Zhang, Y. Hu, B. Li, L. Peng. Performance and Power Analysis of ATI GPU: A

Statistical Approach. 6th IEEE International Conference on Networking, Architecture and

Storage (NAS), 2011. pp 149 - 158.

