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Abstract. GPUs employ thousands of threads per core to achieve high 

throughput. These threads exhibit localities in control-flow, instruction and data 

addresses and values. In this study we investigate inter-warp instruction 

temporal locality and show that during short intervals a significant share of 

fetched instructions are fetched unnecessarily. This observation provides 

several opportunities to enhance GPUs. We discuss different possibilities and 

evaluate filter cache as a case study. Moreover, we investigate how variations in 

microarchitectural parameters impacts potential filter cache benefits in GPUs.  

Keywords: Multi-threaded processors, Energy-efficient design, Pipeline front-

end 

1 Introduction 

Innovative microarchitectural solutions have used locality to enhance processor 

performance in several ways (e.g., caches, branch predictors, etc).  Many studies have 

investigated locality in CPUs. Locality in GPUs [3], however, has not received the 

same level of attention.  

In this study we explore Inter-warp Instruction Temporal Locality (or simply ITL). 

ITL represents our observation that a small number of static instructions account for a 

significant portion of dynamic instructions fetched and decoded during short intervals 

and within the same stream multiprocessor. We investigate ITL among threads and 

show how GPUs come with ample ITL.  

An important issue contributing to ITL in GPUs is deep multi-threading. GPUs 

achieve high throughput by employing and interleaving thousands of threads per core. 

Threads are grouped into coarser independent schedulable elements (called warps) to 

achieve both scheduling simplicity and SIMD efficiency. The warp scheduler issues 

instructions from different warps back-to-back filling the pipeline effectively. This 

pipeline organization amplifies ITL by fetching the same instruction for all warps 

during short intervals. 



Moreover, we have observed that the chances of accessing a recently fetched 

instruction again are higher in GPUs compared to CPUs. For example, our evaluation 

shows the likelihood of fetching the same instruction within a 64-cycle period is 67% 

in CPUs. This grows to 82% in GPUs (see Section 5.1 for methodology).  

Each generation of GPUs has superseded the precedent generation by increasing 

the number of executed warps (also referred to as multi-threading depth) and SIMD 

width. It is expected that deep multithreading will continue to serve an important role 

in performance growth in GPUs in upcoming years. Therefore, we expect the current 

trend in ITL in GPUs to continue in near future. 

In this work, we list different opportunities to improve energy efficiency in GPUs 

by exploiting ITL. In particular and as a case study, we evaluate energy savings 

achievable under filter caches [12] in GPUs. As we show, employing a filter cache 

eliminates a significant share of the instruction cache accesses, improving the fetch 

engine’s energy efficiency.  

The rest of the paper is organized as follows. In Section 2 we study related works. 

In Section 3 we present the pipeline front-end of GPU microarchitectures and review 

ITL. We investigate our case study in Section 4. We present experimental setup and 

simulation results in Section 5. Finally, in Section 6 we offer concluding remarks. 

2 Related Works 

Locality studies (data or instruction) in GPUs have received less attention 

compared to CPUs. Collange et al [5] studied data locality in registers and found that 

register values often appear uniform across threads of a warp. They introduced 

dynamic mechanisms detecting up to 19% of the register values as uniform. Their 

mechanism can be exploited to reduce the number of accesses to the register file or 

reduce the size of vector register file. Gebhart et al [7] observed that the written 

registers are often read last within three instructions after the write. They introduce a 

register file cache to reduce the number of accesses to the conventional power-hungry 

register file. Moreover, to prevent heavy contention on register file cache, they 

introduce a two-level warp scheduler. At the first-level they maintain a few active 

warps. At the second-level other inactive warps are stored. Each warp at the first-level 

has a few registers in the cache. The scheduler issues instructions from these warps 

for as long as possible. Once a warp at the first-level stalls on the completion of a 

long latency instruction (due to operand dependency), the scheduler replaces it with a 

ready warp from the second-level. The mechanism effectively saves 36% of register 

file power, which translates to 3.8% of chip dynamic power. 

Collagne et al. [4] stressed different NVIDIA GPUs by various workloads to reveal 

the effect of workload on GPU power. They evaluated power for different number of 

SIMD processors and reported energy per memory access and energy per ALU 

instruction. Hong and Kim [10] observed that the optimal performance/watt differs 

for various types of workloads, depending on the number of active cores. They 

introduced a performance-power model to predict the optimal number of cores for 

achieving the best performance/watt dynamically. They also reported the contribution 

of each architectural module to the dynamic power. They found that GPU’s front-end 

(fetch, decode, and scheduling) accounts for 18% of GPU’s dynamic power. Zhang et 
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Fig. 1. The microarchitecture of SM’s front-end. 
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Fig. 2. Fetch redundancy among concurrent warps of SMs during 16, 32, and 64 
recent fetches for different benchmarks.  
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IF resolves control dependences among warp instructions using the PC logic 

module. This module stalls the warp upon a pending branch. PC logic also determines 

the next active PC of the warp. IF takes one cycle to select the PC and fetch the 

corresponding instruction from I-Cache to the IB stage if I-Cache hits. 

After an instruction is fetched, the warp scheduler sends it to an empty field in the 

instruction buffer in the next cycle. This empty field is reserved at fetch time and 

therefore the fetched instruction always finds an empty instruction buffer entry. 

Instruction Buffer. Data dependency is resolved through scoreboarding. 

Instructions communicate only through the register file and operand forwarding is not 

supported. Once the scoreboard marks the instruction as ready, the scheduler can 

select the instruction to proceed. The instruction scheduler used at this stage uses 

round-robin policy. 

Instruction Dispatch. ID buffers collect register operands from highly banked 

register files [15] and issue instructions to the pipeline’s back-end as soon as all 

operands are buffered.  

We assume a scoreboard structure similar to [6]. Each scoreboard entry is 

associated with a different warp and points to the registers having a pending value. 

This information is maintained at the register region granularity. Each register region 

is identified using a base (register ID) and an offset (number of register after the 

base). Each scoreboard entry can keep track of 6 register regions. Scoreboard stalls an 

instruction due to a RAW/WAR dependency if the input/output operands of the 

instruction belong to a register region in the warp’s scoreboard entry. Note that a warp 

is stalled if all of its register regions are taken in the scoreboard. Therefore increasing 

the number of register regions reduces the probability of warp stalls. Our evaluation 

shows that six register regions per warp are enough to achieve maximum ILP under 

the evaluated workloads and the employed in-order pipeline. Once an instruction 

commits, the register region is released.  



3.2 ITL  

ITL stems from the fact that a few static instructions account for a significant 

portion of instructions fetched and decoded among different warps during short 

intervals and within the same warp scheduler. SMs often execute concurrent warps 

from the same kernel code. Moreover, the scheduler keeps the warps at the same pace 

to improve cache locality [13], further increasing ITL.  

To provide better understanding we measure and report fetch redundancy as an 

indication of ITL. Fetch redundancy reports the percentage of instructions already 

fetched by other currently active warps recently. We measure fetch redundancy in 

different recency windows (16, 32, and 64). We present our findings in Figure 2.  

Average fetch redundancy is 53%, 59%, and 67%for recency window sizes of 16, 

32, and 64, respectively. Highly parallel benchmarks, which employ a high number of 

blocks per grid with a few branch divergences (e.g., CP, HSPT, and NN), show higher 

fetch redundancy. Other benchmarks, which have fewer concurrent warps (e.g., GAS, 

SR2, and NW), or more diverging branches (e.g., MP2, MP, MU2, MU, NQU), 

exhibit less fetch redundancy. 

3.3 Exploiting ITL 

In this section, we briefly go over possible power and performance benefits 

achievable using ITL in GPUs. 

Fetch/decode bypassing. Loop buffering stores the decoded word of loop 

instructions in a dedicated buffer and skips fetch/decode as long as the thread 

proceeds inside the loop [9]. The challenge in CPUs is to find loop boundaries 

effectively and fitting the entire loop in the buffer. GPUs can take advantage of 

bypassing by storing the most recent decoded warp instructions and reusing them later 

by other warps.  

Reducing the size of instruction buffer. We have observed that for ~42% of 

instruction fetches, the corresponding decoded instruction already exists in the 

instruction buffer (in the entries dedicated to other warps). The instruction 

fetch/decode process can be bypassed by reading the decoded word from the 

instruction buffer. A more efficient alternative is to share similar entries among warps 

to reduce instruction buffer size. 

Reducing accesses to I-Cache. ITL can be used to filter accesses to I-Cache. This 

can be done by using a filter cache or row buffer [12]. Filter cache uses temporal 

locality to reduce cache miss rate by storing the most recent fetched instructions. Row 

buffer stores the last accessed I-Cache block (row) and serves fetch requests for 

blocks residing in the buffer. In the next section we evaluate energy saving 

opportunities provided by filter cache.  

4 Using ITL Case Study in GPUs: Filter Cache 

Exploiting filter caches (FC) in current GPUs requires minor modifications to the 

baseline pipeline front-end (described in section 3.1). FC is probed using the next 

program counter (PC) to fetch. If the instruction look-up hits during FC tag check, the 
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Table 2. Benchmark characteristics. CTA/SM indicates the maximum number of 
concurrent blocks per SM which is limited by both parallelism and occupancy. 

Abbr. Name and Suite Grid Size Block Size #Insn CTA/SM 

BFS BFS Graph [2] 16x(8) 16x(512) 1.4M 1 

BKP Back Propagation [2] 2x(1,64) 2x(16,16) 2.9M 4 

CP Coulumb Poten. [19] (8,32) (16,8) 113M 8 

DYN Dyn_Proc [2] 13x(35) 13x(256) 64M 4 

FWAL Fast Wal. Trans. [18] 

6x(32) 

3x(16) 
(128) 

7x(256) 

3x(512) 
11M 2, 4 

GAS Gaussian Elimin. [2] 48x(3,3) 48x(16,16) 9M 1 

HSPT Hotspot [2] (43,43) (16,16) 76M 2 

LPS Laplace 3D [1] (4,25) (32,4) 81M 6 

MP2 MUMmer-GPU++ [8] big (196) (256) 139M 2 

MP 
MUMmer-GPU++ [8] 

small 
(1) (256) 0.3M 1 

MTM Matrix Multiply [18] (5,8) (16,16) 2.4M 4 

MU2 MUMmer-GPU [2] big (196) (256) 75M 4 

MU MUMmer-GPU [2] small (1) (100) 0.2M 1 

NNC Nearest Neighbor [2] 4x(938) 4x(16) 5.9M 8 

NN Neural Network [1] 

(6,28) 
(25,28) 

(100,28) 

(10,28) 

(13,13) 

(5,5) 
2x(1) 

68M 5, 8 

NQU N-Queen [1] (256) (96) 1.2M 1 

NW Needleman-Wun. [2] 

2x(1) 

… 

2x(31) 
(32) 

63x(16) 12M 2 

RAY Ray Tracing [1] (16,32) (16,8) 64M 3 

SCN Scan [18] (64) (256) 3.6M 4 

SR1 Speckle Reducing [2] big 4x(8,8) 4x(16,16) 9.5M 2, 3 

SR2 Speckle Reducing [2] small 4x(4,4) 4x(16,16) 2.4M 1 

 

Our study shows that MUX delay is negligible compared to the rest and can be 

ignored. Table 1 reports the access latency of FC tag, FC data, I-Cache tag, and I-

Cache data. IF delay for FC check hit/miss scenario is 0.28ns/0.45ns plus warp 

scheduling delay. The evaluated front-end runs under 1.3 GHz (0.77ns clock period). 

For warp scheduling delays below 0.32 ns (0.77 ns - 0.45 ns), FC-enhanced SM does 

not impose extra cycles. Under the pessimistic scenario where warp scheduling’s 

delay exceeds 0.32 ns, IF should be pipelined into two stages. Under such 

circumstances, warp scheduling and FC check are done at the first stage. The second 

stage decides whether to fetch the instruction from FC or I-Cache. This design 

extends the pipeline depth by a cycle compared to the baseline resulting in a 

performance loss less than 1%.  

Hardware Overhead. FC-enhanced SM requires two auxiliary structures.  First, a 

multiplexer is used to select between two 64-bit instruction words. Second, additional 

storage is needed for the FC module to temporarily store a small number of 

instructions. Our simulations show that a 32-entry FC captures a significant share of 
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end energy 
 

Operand Collector and buffering

Table 3. Baseline configurations for GPGPU

NoC 

#SMs : #Memory Ctrls 

#SM Sharing a Network Interface 

Clocking 

Core 1300

Interconnect 650 

DRAM 800 

Memory 

#Banks Per Memory Ctrls 

DRAM Scheduling Policy 

SM 

Warp size : SIMD width  32

Thread/SM  1024

Register file : Shared memory 
64KB 

16KB
 

 
The 32-entry FC imposes 4.7% area overhead compared to a 

conventional pipeline front-end.  

sim v2.1.1b [1] to model the baseline architecture described in 

We configured GPGPU-sim with the parameters shown in Table 

have extended GPGPU-sim to model the discussed FC-enhanced pipeline front

We extended the simulator to model 4KB 4-way 4-set [20] I-Cache per SM (

instructions per line). On a cache miss, the associated warp is stalled for 300

access the cache block in global memory. Requests from different warps are merged 

warp MSHRs. We used benchmarks from Rodinia benchmark 

CUDA SDK 2.3 [18], Parboil [19], and the benchmarks distributed

We also included the MUMmerGPU++ [8] third-party sequence 

Table 3 shows benchmarks’ characteristics. 

We report both static and dynamic power. We use CACTI 6.5 [16] to estimate the 

power dissipation, area, and latency of an FC-enhanced SM compared to the baseline 

nm technology. For small sized modules, like the operand collector, we 

scaled the number linearly to extrapolate the parameters. We extracted 6 samples of 

larger caches (keeping I/O bits, associativity, and other parameters the same) from 

CACTI to find the line’s parameters.  

Results 

In this section, we first report the energy breakdown of the baseline architecture. 

percentage of I-Cache accesses filtered by FC and the associ

configurations for GPGPU-sim. 
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Table 4. FC energy saving compared to the baseline as measured by CACTI [16] 

 

FC 

hit rate 

Baseline 

I-Cache energy 

(nJ) 

I-Cache + FC 

energy 

(nJ) 

Front-end 

energy-saving 

using FC 

BFS 97% 644.11 270.93 12% 

BKP 96% 500.14 216.86 9% 

CP 100% 16532.20 6616.15 7% 

DYN 93% 9882.86 4435.14 8% 

FWAL 96% 1730.16 740.77 8% 

GAS 87% 1218.70 592.08 7% 

HSPT 89% 12076.70 5676.64 8% 

LPS 83% 14955.05 7625.97 8% 

MP2 33% 67872.12 57354.82 2% 

MP 30% 161.40 139.78 2% 

MTM 95% 347.37 153.66 8% 

MU2 49% 43099.85 31846.11 5% 

MU 39% 100.32 81.10 4% 

NNC 76% 1718.39 963.81 10% 

NN 99% 132820.86 53780.92 19% 

NQU 50% 217.81 159.97 5% 

NW 70% 5627.29 3356.63 10% 

RAY 76% 10520.69 5945.77 6% 

SCN 97% 562.47 240.70 9% 

SR1 87% 1430.76 699.11 8% 

SR2 84% 368.94 189.63 7% 

 

energy savings. Finally, we evaluate filter caches under various microarchitectural 

changes. 

Energy Breakdown. Figure 4 presents the energy breakdown for the SM pipeline 

front-end for the evaluated workloads. The operand collector and the associated 

buffering are the most energy consuming parts accounting for 40% of dynamic power. 

I-Cache, which is the target of this case study, is second, accounting for 27%.   

FC Hit Rate. Table 4 reports FC hit rate, which is equal to percentage of the I-

Cache accesses filtered. FC check hit rate reaches a maximum of ~100%. Hit rate is 

above 60% for coherent control-flow compute-intensive workloads like CP, DYN, 

HSPT, LPS, and MTM. FC shows lower hit rate in control-flow intensive workloads 

with high branch divergence (e.g., MU2, and MP2). This is due to the fact that these 

benchmarks exhibit lower ITL as warps often follow different diverging paths. Hit 

rate is also low for workloads with limited warp-level parallelism (MU, NW, MP, 

SR2, and NQU). Lower number of concurrent warps reduces the chance of instruction 

reuse and consequently FC hit rate.  

Energy Saving. Table 1 reports die area, leakage power, read/write energy per 

access, and access latency for modules with significant energy contribution in the 

pipeline front-end. We assume two ports per I-Cache and FC caches, one read port 

and one write port. Using a 32-entry FC cache, front-end static power increases by 

5.0%. Assuming 16KB register file (7.46 mW leakage), 16KB shared data cache (5.80 



 

 

Fig. 5. Sensitivity for a) FC hit rate and b) front-end energy reduction to the 
multithreading depth (1024 and 512), warp scheduling policy (RR for round-robin 
and 2Lev for two-level scheduler), and FC size (32 and 16) for different 
benchmarks.  
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mW leakage), 5KB texture cache (1.93 mW leakage), and 2KB L1 constant cache 

(0.82 mW leakage) per SM, FC imposes less than 0.7% leakage power per SM. 

In Table 4, we report the dynamic energy consumption of the baseline I-Cache 

compared to the FC-enhanced design (I-Cache + FC). As reported, FC can reduce I-

Cache energy from 13% (MP) to 60% (CP). This translates to from 2% (MP 

benchmark) to 19% (NN benchmark) of the overall pipeline front-end dynamic 

energy reduction. Assuming an 18% overall energy share for the front-end [10], an 

FC-enhanced GPU saves up to 3.4% of the dynamic energy. 

Sensitivity Analysis. In this section we report FC hit rate and energy reduction 

under variations in multithreading depth, FC size, and warp scheduler. We evaluate 

filter caches for 512 threads per SM, 16-entry FC, and a two-level warp scheduler 

[17] as an alternative to our baseline 32-entry FC, 1024 threads per SM, and round-

robin warp scheduler.  

Employing the two-level scheduler improves memory latency hiding. Two-level 

scheduler divides the warps into multiple fetch groups and gives the highest priority 

to the warps belonging to the fetch group of the last issued warp. This mechanism can 

hide the memory accesses made in one fetch group using the computations of other 

fetch groups. We choose 8 warps per fetch group to achieve maximum latency hiding.  

Figure 5 reports FC hit rate and front-end energy reduction for different 

combinations: multithreading depth (1024, and 512), FC sizes (32, and 16), and warp 



schedulers (RR, and 2Lev). In the interest of space we report average and a few 

representative benchmarks.  

Multithreading Depth. Reducing multithreading depth is expected to reduce ITL. 

CP, LPS, and SCN are among the benchmarks that have enough parallelism to run 

more than 512 threads per SM. As reported, reducing multithreading depth to 512 

threads reduces FC hit rate up to 6% (in LPS) compared to 1024 threads per SM but 

has minor impact on energy reduction.  

Warp Scheduler. We expect to see lower FC hit rate under 2Lev compared to RR 

under fixed FC size and multithreading depth. This is because 2Lev keeps the warps 

of different fetch groups at different paces reducing the ITL. As reported, 2Lev often 

impacts FC hit rate but insignificantly.  

FC Size. Among the parameters studied here, FC size has the highest impact. 

Lower FC size reduces FC hit rate. However, smaller FC comes with lower energy 

overhead. As reported, a 16-entry FC has a lower FC hit rate (on average of 9% to 

10% percent) compared to a 32-entry. However, since the 16-entry consumes less 

energy, it still shows higher energy reduction.  

6 Conclusion 

In this study we showed that there is high temporal instruction locality in GPU 

microarchitectures for general-purpose computations. Concurrent warps fetch and 

decode the same instruction frequently providing an opportunity to design a more 

efficient pipeline front-end. We suggested different possibilities to exploit this locality 

to improve performance, energy, and area. We investigated filter cache as a case 

study. We found that a simple direct-map filter cache per SM can eliminate 30% to 

~100% of I-Cache requests reducing pipeline front-end energy up to 19%. We have 

evaluated our results under various microarchitectural changes including 

multithreading depth, warp scheduling, and filter cache size. 
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