

Figure 1. Warp size impact on performance for different

SIMD widths, normalized to an 8-wide SIMD and 4x warp

size.

���
��� ��� �� �� �� �

Permission to make digital or hard copies of all or part of this work for
personal or class room use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GPGPU-6, March 16 2013, Houston, TX, USA

Copyright 2013 ACM 978-1-4503-2017-7/13/03 $15.00.

Warp Size Impact in GPUs: Large or Small?

ABSTRACT

There are a number of design decisions that impact a GPU’s
performance. Among such decisions deciding the right warp size
can deeply influence the rest of the design. Small warps reduce
the performance penalty associated with branch divergence at the
expense of a reduction in memory coalescing. Large warps
enhance memory coalescing significantly but also increase branch
divergence. This leaves designers with two choices: use small
warps and invest in finding new solutions to enhance coalescing
or use large warps and address branch divergence employing
effective control-flow solutions.

In this work our goal is to investigate the answer to this question.
We analyze warp size impact on memory coalescing and branch
divergence. We use our findings to study two machines: a GPU
using small warps but equipped with excellent memory coalescing
(SW+) and a GPU using large warps but employing an MIMD
engine immune from control-flow costs (LW+).

Our evaluations show that building coalescing-enhanced small
warp GPUs is a better approach compared to pursuing a control-
flow enhanced large warp GPU.

General Terms
Performance, Design,

Keywords
GPU architecture, Warp size, SIMD efficiency, Branch
divergence, Memory divergence.

1. INTRODUCTION
Conventional single-instruction multiple-threads (SIMT)

accelerators interleave execution of thousands of threads to
achieve high throughput. Parallel threads overlap the
communication overhead associated with some threads using
computations required by other threads to maintain high resource
utilization. To manage threads efficiently, neighbor threads are
bundled in groups referred to as warps and processed in lock-step.
Operating at warp-level granularity simplifies the thread
scheduling significantly since it can run on fewer schedulable
elements. In addition, this approach keeps many threads at the
same pace providing an opportunity to exploit common control-

flow and memory access patterns. Underlying SIMD units are
more efficiently utilized as a result of executing warps built using
threads with the same program counter and behavior. In addition,
memory accesses of neighbor threads within a warp can be
coalesced to reduce the number of off-core requests.

Previous studies have shown that GPUs are still far behind
their potential peak performance as they face two important
challenges: branch and memory divergence [6, 11]. Upon branch
divergence, threads at one side of a branch stay active while the
other side has to become idle. Upon memory divergence, threads
hitting in cache have to wait for those who miss. At both
divergences, threads suffer from unnecessary waiting periods.
This waiting can result in performance loss as it leaves the core
idle if there are not enough ready threads.

One of the parameters, which can impact performance (and
how often the above divergences occur), is warp size. Small
warps, i.e., warps as wide as SIMD width, reduce the likelihood of
branch divergence occurrence. Reducing branch divergence
frequency improves SIMD efficiency by increasing the number of
active lanes. At the same time, a small size warp reduces memory
coalescing, effectively increasing the number of memory stalls.
This can lead to redundant memory accesses and increase pressure
on the memory subsystem. Large warps, on the other hand,
exploit potentially existing memory access localities among
neighbor threads and coalesce them to a few off-core requests. On
the negative side, bigger warp size can increase serialization and
the branch divergence impact.

Figure 1 reports average performance for benchmarks used in
this study (see methodology for details) for GPUs using different
warp sizes and SIMD widths. For any specific SIMD width,

Ahmad Lashgar1,3, Amirali Baniasadi2, Ahmad Khonsari1,3
1School of ECE, University of Tehran

2ECE Department, University of Victoria
3School of Computer Science, Institute for Research in Fundamental Sciences

a.lashgar@ipm.ir, amirali@ece.uvic.ca, ak@ipm.ir

Figure 2. (a) Coalescing rate, (b) Idle cycle share and (c) Performance under different warp sizes. IPC is normalized to a GPU

using 32 threads per warp. We report part of the results here (complete results are presented in Section VI).

�
��
��
��
��
��
��
��
	�

�

���

BKP CP HSPT MU

C
o

a
le

sc
in

g
 R

a
te

(a)

	 �� �� ��

�%

��%

��%

��%

	�%

���%

BKP CP HSPT MU

S
h

a
re

 o
f

id
le

 c
y

cl
e

s

(b)

	 �� �� ��

�.�

�.�

�.	

�

�.�

�.�

�.�

�.	

BKP CP HSPT MU

N
o

rm
a

li
ze

d
 I
P

C

(c)

	 �� �� ��

configuring the warp size to 1-2X larger than SIMD width
provides best average performance. Widening the warp size
beyond 2X degrades performance.

In this paper we investigate how warp size impacts
performance in GPUs. We start with studying GPUs using
different warp sizes ranging from 8 to 64. We use our analysis to
investigate the effectiveness of two possible approaches to
enhance GPUs. The first approach relies on enhancing memory
coalescing in GPUs using large warps. Once memory coalescing
is enhanced, this approach uses effective control-flow solutions to
address the resulting increase in branch divergence. The second
approach aims at minimizing branch serialization in GPUs using
small warps. Since small warps affect coalescing negatively, this
approach requires taking extra steps to address memory stalls. We
may expect the two approaches to be equally effective as they
address GPU’s performance degrading issues, memory and branch
divergence, simultaneously. However, our experimental results
show that often one outperforms the other.

In this work we evaluate both approaches and estimate the
performance return of both solutions. We show that starting with a
small warp size, and then using dynamic memory divergence
solutions is a better choice.

In summary we make the following contributions:

C We study the impact of warp size on different parameters
including memory stalls, idle cycles and performance.

C We use our findings to identify an effective approach to
enhancing GPU performance. We show that the combination
of a static and simple approach to deal with branch divergence
(using small warps) and dynamic memory stall reductions
solutions is an effective approach.

C We also investigate the alternative and show that using a
static solution to enhance coalescing (i.e., using large warps)
combined with an ideal dynamic control-flow solutions falls
behind the first approach due to frequent synchronizations of a
large number of threads.

The rest of the paper is organized as follows. In Section 2 we
study background. In Section 3 we review warp size impact. In
Section 4 we present our machine models. In Section 5 we discuss
methodology. Section 6 reports experimental results. In Section 7
we discuss our findings in more detail. In Section 8 we review
related work. Finally, Section 9 offers concluding remarks.

2. BACKGROUND
In this study we focus on SIMT accelerators similar to

NVIDIA Tesla architecture [12]. Stream Multiprocessors (SMs)

are deeply multi-threaded processors sharing private non-coherent
L1 caches among threads. On chip interconnection network
(crossbar network in this study) is responsible for routing SM off-
chip requests to corresponding memory controllers (MC) and
delivering the MC respond to the SM.

Each SM keeps context (including register and shared
memory) for 1024 threads. An SM has one thread scheduler
which groups and issues warps on one SIMD group. Threads
within a warp have one common program counter while control-
flow divergence among threads is managed using re-convergence
stack [6]. Diverged threads are executed serially until re-
converging at the immediate post-dominator of branch. Re-
convergence point is embedded in the binary and is extracted by
the architecture during branch execution.

Instructions from different warps are issued back-to-back
into the deep 24-stage, 8-wide SIMD pipeline. If the warp pool
has no ready warp, the pipeline front-end stays idle leading to
back-end underutilization. Under such circumstances, all the
warps are issued into the pipeline. However, there are ready
threads that are inactive/waiting due to branch/memory
divergence [14]. Inactive threads are those ready to execute
different diverging paths while waiting threads are those waiting
at the re-convergence point to get synchronized with other threads
of the warp.

The global memory accesses of neighbor threads are
coalesced to perform scatter/gather operations efficiently. We
model a coalescing behavior similar to compute compatibility 2.0
[17]. Requests from neighbor threads accessing the same cache
line are merged into one request. Neighbor threads are aggregated
over the entire warp. Consequently, memory accesses of a warp
are coalesced into one or many cache line accesses. Each line is
64 bytes. Memory transaction granularity is the same as cache line
size, which is one stride.

3. WARP SIZE IMPACT
In this section we report how warp size impacts memory

access coalescing, idle cycles, and performance. We do not report
SIMD efficiency since our observations show that warp size has
insignificant (less than 1%) impact on activity factor ([10]). See
Section 5 for methodology.

Memory access coalescing. Memory accesses made by
threads within a warp are coalesced into fewer memory
transactions to reduce bandwidth demand. We measure memory
access coalescing using the following equation:

��������	
���� �
������������������

���������������� !����
 (1)

(a) Baseline microarchitecture

Figu

We use this definition (equation 1) to estimate coalescing
this paper. Figure 2(a) compares coalescing rates for different
warp sizes. As shown in this figure, increasing the warp size
improves the coalescing rate in all the benchmarks. An increase in
warp size can increase the likeliness of memory accesses made to
the same cache line residing in the same warp. This increase starts
to diminish for warp sizes beyond 32 threads for most benchmarks
used here as coalescing width (16 words of
saturated. Accordingly, enlarging the warp beyond a specific size,
returns little coalescing gain.

Idle cycles. Idle cycles are cycles during which the scheduler
finds no ready warps in the pool. Small warps
synchronization to improve latency hiding. At the same time, they
may increase memory latency by imposing coalescing rate
reduction overhead. Figure 2(b) reports idle cycle frequency for
GPUs using different warp sizes. Core idle cycles are
result of branch/memory divergences which inactivate otherwise
ready threads [14]. Small warps compensate branch/memory
divergence by hiding idle cycles (e.g. BFS). On the other hand,
for some benchmarks (e.g., BKP), small warps lose many
coalescable memory accesses increasing memory pressure. This
pressure increases average core idle durations compared to larger
warps (e.g. BKP). Consequently, the effect of warp size on idle
cycles depends on the amount of wasted coalescing and obtained
latency hiding.

Performance. An increase in warp size can have opposing
impacts on performance. Performance can improve if an increase
in memory access coalescing compensates
overhead imposed by large warps. Performance can suffer if the
synchronization overhead associated with large warps outweighs
coalescing memory access gains. Figure 2(c)
(in terms of instruction per clock or IPC) for GPUs using different
warp sizes. As reported, in most workloads
size has significant impact on performance. Performance
improves in BKP with warp size. Performance is lost in
warp size increases. Other workloads perform best under average
warp sizes (16 or 32 threads).

We conclude from this section that warp si
performance in different ways.

One possible way to enhance performance is to start with
small or large warp size and then invest in compensating the
negative aspects with aggressive solutions. In the remainder of
this work, we study two machine models and investigate this
approach further.

 (b) SW+ microarchitecture

Figure 3. Machine models compared in this study.

to estimate coalescing in
compares coalescing rates for different

warp sizes. As shown in this figure, increasing the warp size
g rate in all the benchmarks. An increase in

warp size can increase the likeliness of memory accesses made to
the same cache line residing in the same warp. This increase starts

 threads for most benchmarks
 words of 32-bit) becomes

saturated. Accordingly, enlarging the warp beyond a specific size,

Idle cycles are cycles during which the scheduler
finds no ready warps in the pool. Small warps reduce thread
synchronization to improve latency hiding. At the same time, they
may increase memory latency by imposing coalescing rate

reports idle cycle frequency for
GPUs using different warp sizes. Core idle cycles are partially the
result of branch/memory divergences which inactivate otherwise

]. Small warps compensate branch/memory
divergence by hiding idle cycles (e.g. BFS). On the other hand,
for some benchmarks (e.g., BKP), small warps lose many

lescable memory accesses increasing memory pressure. This
pressure increases average core idle durations compared to larger
warps (e.g. BKP). Consequently, the effect of warp size on idle
cycles depends on the amount of wasted coalescing and obtained

e in warp size can have opposing
impacts on performance. Performance can improve if an increase

compensates the synchronization
overhead imposed by large warps. Performance can suffer if the

nchronization overhead associated with large warps outweighs
) reports performance

(in terms of instruction per clock or IPC) for GPUs using different
 presented here, warp

size has significant impact on performance. Performance
improves in BKP with warp size. Performance is lost in MU as
warp size increases. Other workloads perform best under average

We conclude from this section that warp size can impact

One possible way to enhance performance is to start with
small or large warp size and then invest in compensating the
negative aspects with aggressive solutions. In the remainder of

ine models and investigate this

4. MACHINE MODELS
In this section we introduce two machine models to

investigate which warp size provides higher performance if their
deficiency is resolved ideally. Figure
and the baseline. Our first model is a coalescing
warp machine, referred to as SW+. SW+ uses small warps but
comes with ideal coalescing. Intuitively we study SW+ to measure
the performance potential in building small warp machines. Our
second model represents a control
machine, referred to as LW+. We use LW+ to estimate the
performance improvement possible for a processor using a large
warp size but equipped with an ideal control

4.1 SW+
As shown in Figure 3(b),

(as wide as SIMD width). Small warps reduce branch/memory
divergence and improve latency hiding and memory level
parallelism by synchronizing fewer threads at every instruction.
Small warps lose some coalescing opportunities leading to
redundant memory accesses. To address the negative side of small
warps, SW+ is enhanced to address the performance penalty
associated with uncoalesced accesses. SW+ is equipped with ideal
coalescing hardware, which coalesces the memory accesses of all
threads. Ideal coalescing hardware keeps track of outstanding
memory requests (of all threads) and merges read accesses with
outstanding accesses whenever possible. This merging captures
most coalescing opportunities occu
compensating the penalty paid by small warps effectively. In
summary, SW+ is small warp size machine where the coalescing
capabilities are extended to coalesce the memory accesses of the
threads across all warps instead of one warp.

The motivation behind investigating SW+ is to study if
investing in a small warp size machine to enhance memory
coalescing can lead to high performance returns.

4.2 LW+
We investigate LW+ to evaluate if investing in a large warp

size machine to enhance branch divergence is the right approach.
As shown in Figure 3(c), LW+
larger than the SIMD width). Exploiting large warps facilitates
efficient usage of memory bandwidth by coalescing memory
accesses.

Large warps exacerbate
divergence. LW+ addresses this issue as both sides of divergence
are split and actively remain in the warp pool in this machine.
This splitting does not return considerable performance gain since
threads may never re-converge
underutilization [7]. Therefore,

(c) LW+ microarchitecture.

MACHINE MODELS
In this section we introduce two machine models to

investigate which warp size provides higher performance if their
Figure 3 compares these machines

seline. Our first model is a coalescing-enhanced small
warp machine, referred to as SW+. SW+ uses small warps but
comes with ideal coalescing. Intuitively we study SW+ to measure
the performance potential in building small warp machines. Our

epresents a control-flow-enhanced large warp
machine, referred to as LW+. We use LW+ to estimate the
performance improvement possible for a processor using a large
warp size but equipped with an ideal control-flow solution.

, this machine exploits small warps
(as wide as SIMD width). Small warps reduce branch/memory
divergence and improve latency hiding and memory level
parallelism by synchronizing fewer threads at every instruction.

me coalescing opportunities leading to
redundant memory accesses. To address the negative side of small
warps, SW+ is enhanced to address the performance penalty
associated with uncoalesced accesses. SW+ is equipped with ideal

alesces the memory accesses of all
threads. Ideal coalescing hardware keeps track of outstanding
memory requests (of all threads) and merges read accesses with
outstanding accesses whenever possible. This merging captures
most coalescing opportunities occurring for large warps,
compensating the penalty paid by small warps effectively. In
summary, SW+ is small warp size machine where the coalescing
capabilities are extended to coalesce the memory accesses of the
threads across all warps instead of one warp.

The motivation behind investigating SW+ is to study if
investing in a small warp size machine to enhance memory
coalescing can lead to high performance returns.

We investigate LW+ to evaluate if investing in a large warp
h divergence is the right approach.

+ groups threads in large warps (8x
larger than the SIMD width). Exploiting large warps facilitates
efficient usage of memory bandwidth by coalescing memory

Large warps exacerbate idle periods imposed by branch
divergence. LW+ addresses this issue as both sides of divergence
are split and actively remain in the warp pool in this machine.
This splitting does not return considerable performance gain since

converge again leading to SIMD
, we further enhance this machine

TABLE 1. Benchmarks characteristics.

Name Grid Size Block Size #Insn

BFS: BFS Graph [3] 16x(8,1,1) 16x(512,1) 1.4M

BKP: Back Propagation [3] 2x(1,64,1) 2x(16,16) 2.9M

DYN: Dyn_Proc [3] 13x(35,1,1) 13x(256) 64M

FWAL: Fast Walsh Transform [6]

6x(32,1,1)

3x(16,1,1)

(128,1,1)

7x(256)

3x(512)
11.1M

GAS: Gaussian Elimination [3] 48x(3,3,1) 48x(16,16) 8.8M

HSPT: Hotspot [3] (43,43,1) (16,16,1) 76.2M

MP: MUMmer-GPU++ [8] (1,1,1) (256,1,1) 0.3M

MTM: Matrix Multiply [14] (5,8,1) (16,16,1) 2.4M

MU: MUMmer-GPU [1] (1,1,1) (100,1,1) 0.15M

NNC: Nearest Neighbor on cuda [2] 4x(938,1,1) 4x(16,1,1) 5.9M

NQU: N-Queen [1] (256,1,1) (96,1,1) 1.2M

NW: Needleman-Wunsch [3]

2x(1,1,1)

…

2x(31,1,1)

(32,1,1)

63x(16) 12.9M

SC: Scan[14] (64,1,1) (256,1,1) 3.6M

SR1: Speckle Reducing Anisotropic
Diffusion [3] (large dataset)

3x(8,8,1) 3x(16,16) 9.1M

SR2: Speckle Reducing Anisotropic
Diffusion [3] (small dataset)

4x(4,4,1) 4x(16,16) 2.4M

TABLE 2. Baseline configurations for GPGPU-sim.

NoC

Total Number of SMs 16

Number of Memory Ctrls 6

Number of SM Sharing an Network
Interface

2

SM

Number of thread per SM 1024

Maximum allowed CTA per SM 8

Shared Memory/Register File size 16KB/64KB

SM SIMD width 8

Warp Size 8 / 16 / 32 / 64

L1 Data cache
48KB: 8-way: LRU:
64BytePerBlock

L1 Texture cache
16KB: 2-way: LRU:
64BytePerBlock

L1 Constant cache
16KB: 2-way: LRU:
64BytePerBlock

Clocking

Core clock 1300 MHz

Interconnect clock 650 MHz

DRAM memory clock 800 MHz

Memory

Number of Banks Per Memory Ctrls 8

DRAM Scheduling Policy FCFS

by replacing the SIMD lanes with MIMD cores. Splitting upon
divergence and using MIMD cores solves both problems. In
summary, LW+ executes threads of a warp in lock-step and upon
branch divergence and executes both sides in parallel on MIMD
underlying hardware. There is no single common program counter
among threads, and no re-convergence stack. Each thread has its
own private program counter, which is decoded in parallel to
other threads. LW+ only follows warp lock-step execution while
executing the warp threads on underlying MIMD.

Previous studies have suggested solutions to reduce the
impact of branch divergence. DWS [14] adaptively splits the warp
upon branch/memory divergence. DWF [6], TBC [7], LWM [15],
SBI [2] and SWI [2] propose solutions to capture a considerable
amount of MIMD performance by SIMD. Exploiting DWS on top
of TBC or LWM can be viewed as a practical approach in
building LW+-like processors. LW+ is a many-instruction
multiple-threads (MIMT) architecture, which is an aggressive
extension of dual-instruction multiple threads (DIMT) architecture
exploited by SBI and SWI architecture. LW+ compares how
performance is affected if conventional SIMT accelerators move
toward MIMT.

5. METHODOLOGY
We modified GPGPU-sim [1] (version 2.1.1b) to model large

warps and memory coalescing similar to compute compatibility
2.0 devices [17]. We used the configurations shown in Table 1 to
model the baseline microarchitecture described in Section 2. 16

SMs provide peak throughput of 332.8 Gflops. Six 64-bit wide
memory partitions provide memory bandwidth of 76.8 Gbytes/s at
dual-data rate. We use an 8-wide SIMD configuration.

We used a cache block size of 64 bytes, which is equal to
memory transaction chunks. Our evaluations show increasing
cache block size (and accordingly transaction chunk) to 128 bytes,
downgrades the overall performance.

We used benchmarks from GPGPU-sim [1], Rodinia [3] and
CUDA SDK 2.3 [16]. We also included MUMmerGPU++ [8]
third-party sequence alignment program. We use benchmarks
exhibiting different behaviors: memory-intensiveness, compute-
intensiveness, high and low branch divergence occurrence and
with both large and small number of concurrent thread-blocks.
Table 2 shows our benchmarks and their characteristics.

6. RESUTLS
In this section, we evaluate SW+, LW+ and processors using

different warps sizes. In Section 6.1 we present memory access
coalescing. Idle cycle is reported in 6.2. Finally in Section 6.3 we
report performance.

6.1 Memory access coalescing
Figure 4 reports coalescing rate. As reported, SW+ provides

the best coalescing rate. SW+ coalesces memory accesses among
all threads of an SM to achieve this. Widening the coalescing to
merge accesses from all threads can improve coalescing rate by

Figure 4. Coalescing rate for SW+, LW+ and processors using different warp sizes.

Figure 5. Idle cycle share for SW+, LW+ and processors using different warp sizes.

Figure 6. Performance for SW+ and LW+ and processors using different warp sizes.

�

��

���

����

�����

BFS BKP DYN FWAL GAS HSPT MP MTM MU NNC NQU NW SCN SR� SR� avg

C
o

a
le

sc
in

g
 R

a
te

SW+ 	 �� �� �� LW+

�%

��%

��%

��%

	�%

���%

BFS BKP DYN FWAL GAS HSPT MP MTM MU NNC NQU NW SCN SR� SR� avg

Id
le

 C
y

cl
e

s

SW+ 	 �� �� �� LW+

�.�

�.�

�.	

�

�.�

�.�

�.�

�.	

�

BFS BKP DYN FWAL GAS HSPT MP MTM MU NNC NQU NW SCN SR� SR� avg

N
o

rm
a

li
ze

d
 I
P

C

SW+ 	 �� �� �� LW+

58% and 34% compared to coalescing width of 32 threads and 64
threads, respectively.

LW+ is outperformed by a machine using 64 threads per
warp. This is due to the fact that LW+’s MIMT execution does
not keep threads at the same pace to coalesce their accesses. In
some cases (e.g., MP and MU) splitting the warp upon divergence
prevents merging memory requests. Under such circumstances,
redundant memory accesses lead to poor coalescing rate. As we
show later, this does not translate to performance loss since the
memory subsystem is not under-pressure in these workloads (MU
and MP).

6.2 Idle cycles
As discussed in Section 2, small warps reduce idle cycles by

reducing unnecessary waiting due to branch/memory divergence.
This idle cycle saving is lost partially since small warps lose
memory access coalescing, pressuring the memory subsystem.
SW+ addresses this drawback by exploiting ideal coalescing. As
shown in Figure 5, SW+ shows lowest idle cycle share in most
workloads. On average, using short warps combined with ideal
coalescing (SW+), reduces idle cycles by 36%, 21% and 26%
compared to processors using 8, 16 and 32 threads per warp,
respectively.

Our analysis shows synchronizing a large number of threads
at every instruction increases the number of idle cycles in LW+
significantly.

6.3 Performance
Figure 6 reports performance for SW+, LW+ and processors

using different warp sizes. SW+ outperforms all alternatives in
most benchmarks. On average, SW+ outperforms LW+, and
machines using 8, 16 and 32 threads per warp by 11%, 16%, 12%
and 19%, respectively.

LW+ synchronizes all threads of the warp at every
instruction. Even MIMD cores cannot compensate this
synchronization overhead. Therefore a big part of MIMD’s gain is
lost due to unnecessary waitings. On average, LW+ outperforms
processors using 8, 16, 32 and 64 threads per warp by 5%, 1%,
7% and 15%, respectively.

7. DISCUSSION
In this section we comment on some practical implications

and analyze our results further.

Insensitive workloads. Warp size affects performance in
SIMT cores only for workloads suffering from branch/memory
divergence or showing potential benefits from memory access

coalescing. Therefore, benchmarks lacking either of these
characteristics (e.g. FWAL and DYN) are insensitive to warp size.

Enhancing short warps. Among all configurations, a GPU
using 8 threads per warp performs worst for many benchmarks
(e.g., BKP) as it suffers from very low memory coalescing.
SW+’s investment in addressing this issue comes with
considerable (up to 95%) returns. However, this machine
performs well for computation-bounded benchmarks (e.g. BFS,
MP, MU and NQU), which suffer from branch divergence
significantly.

Enhancing large warps. A closer look at the processor
using 64 threads per warp shows that it performs well for a few
benchmarks (e.g. BKP, GAS and SR1 and SR2), but falls behind
for BFS, MU, MP, NNC, NQU and SC which are prone to branch
divergence. Enhancing this processor with an effective control-
flow solution, however, shows very high (up to a maximum of
73% in NQU) performance returns.

Ideal coalescing and write accesses. SW+’s coalescing rate
is far higher than other machines due to ideal coalescing
hardware. However, ideal coalescing can only capture the read
accesses and does not compensate un-coalesced accesses.
Therefore, SW+ may suffer from un-coalesced write accesses. We
found this rare as it can be seen only in the MTM benchmark. The
coalescing rate of SW+ in MTM is higher than other machines
since it merges many read accesses among warps. However, un-
coalesced write accesses downgrades the overall performance in
SW+.

Practical issues with small warps. Pipeline front-end
includes the warp scheduler, fetch engine, decode and register
read stages. Using fewer threads per warp affects pipeline front-
end as it requires a faster clock rate to deliver the needed
workload during the same time period. An increase in the clock
rate can increase power dissipation in the front-end and impose
bandwidth limitation issues on the fetch stage. Moreover, using
short warps can impose extra area overhead as the warp scheduler
has to select from a larger number of warps. In this study we focus
on how warp size impacts performance, leaving the area and
power evaluations to future works.

Register file. Warp size affects register file design and
allocation. GPUs allocate all warp registers in a single row [5].
Such an allocation allows the read stage to read one operand for
all threads of a warp by accessing a single register file row. For
different warp sizes, the number of registers in a row (row size)
varies according to the warp size to preserve accessibility. Row
size should be wider for large warps to read the operands of all
threads in a single row access and narrower for small warps to
prevent unnecessary reading.

8. RELATED WORKS
Mahersi et al. [13] evaluate the impact of warp size on SIMD

efficiency under perfect memory (zero latency). They found that
lower warp size returns higher SIMD efficiency. Kerr et al. [10]
introduced several metrics for characterizing GPGPU workloads.
Bakhoda et al. [1] evaluated the performance of SIMT
accelerators for various configurations including interconnection
networks, cache size and DRAM memory controller scheduling.
Lashgar and Baniasadi [11] evaluated the performance gap
between realistic SIMT cores and semi-ideal GPUs to identify
appropriate investment points.

Dasika et al. [4] studied SIMD efficiency according to the
SIMD width. Their study shows the frequent occurrence of
divergence in the scientific workloads makes wide SIMD
organizations inefficient in terms of performance/watt. 32-wide
SIMD is found to be the most efficient design for the studied
scientific computing workloads.

Jia et al. [9] introduced a regression model relating the GPU
performance to microarchitecture parameters such as SIMD
width, thread block per core and shared memory size. Their study
did not cover warp size but concluded that SIMD width is the
most influential parameter among the studied parameter.

9. CONCLUSION
Filling the performance gap between current GPUs and their

potential requires addressing both memory and branch divergence.

Finding the right configuration of a GPU is perhaps the most
important decision in achieving high performance. Such static
decisions, however, influence the dynamic solutions a system
requires to deal with runtime challenges. Choosing the right warp
size is one example. Approaching memory coalescing with a static
solution (using a large size warp) leaves us with the challenge of
finding effective dynamic control-flow solutions. An alternative
approach is to deal with control-flow first by using small warps
and then investigating dynamic solutions to address memory
coalescing.

We study the performance potential for both approaches and
conclude that the latter approach comes with better performance
returns for benchmarks and configurations used in this work.

10. ACKNOWLEDGMENT
The authors like to thank anonymous reviewers. This work

was supported by School of Computer Science at Institute for
Research in Fundamental Sciences (IPM) and the Natural
Sciences and Engineering Research Council of Canada, Discovery
Grants Program.

REFERENCES

[1] A. Bakhoda et al. Analyzing CUDA workloads using a
detailed GPU simulator. ISPASS 2009.

[2] N. Brunie et al. Simultaneous Branch and Warp Interweaving
for Sustained GPU Performance. ISCA 2012.

[3] S. Che, et al. Rodinia: A benchmark suite for heterogeneous
computing. IISWC 2009.

[4] G. Dasika et al. PEPSC: A Power-Efficient Processor for
Scientific Computing. PACT 2011.

[5] W. W. L. Fung et al. Dynamic Warp Formation: Efficient
MIMD Control Flow on SIMD Graphics Hardware. ACM
Transactions on Architecture and Code Optimization
(TACO). Volume 6, Issue 2, Article 7. (June 2009), pp 1-37.

[6] W. W. L. Fung et al. Dynamic Warp Formation and
Scheduling for Efficient GPU Control Flow. MICRO 2007.

[7] W. W. L. Fung and Tor M. Aamodt. Thread Block
Compaction for Efficient SIMT Control Flow. HPCA 2011.

[8] A. Gharaibeh and M. Ripeanu. Size Matters: Space/Time
Tradeoffs to Improve GPGPU Applications Performance. SC
2010.

[9] W. Jia et al. Stargazer: Automated Regression-Based GPU
Design Space Exploration. ISPASS 2012.

[10] A. Kerr et al. A characterization and analysis of PTX kernels.
IEEE International Symposium on Workload
Characterization, 2009.

[11] A. Lashgar and A. Baniasadi. Performance in GPU
Architectures: Potentials and Distances. 9th Annual
Workshop on Duplicating, Deconstructing, and Debunking
(WDDD 2011).

[12] E. Lindholm et al. NVIDIA Tesla: A Unified Graphics and
Computing Architecture. IEEE Micro, March-April 2008,
Volume 28, Issue 2, pp 39-55.

[13] A. Mahesri, et al. Tradeoffs in designing accelerator
architectures for visual computing. MICRO 2008.

[14] J. Meng et al. Dynamic warp subdivision for integrated
branch and memory divergence tolerance. ISCA 2010.

[15] V. Narasiman et al. Improving GPU Performance via Large
Warps and Two-Level Warp Scheduling. MICRO 2011.

[16] NVIDIA Corp. CUDA SDK 2.3. Available:
developer.nvidia.com/cuda-toolkit-23-downloads

[17] NVIDIA Crop. CUDA C Programming Guide. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html

