
 

 

Figure 1. Warp size impact on performance for different 

SIMD widths, normalized to an 8-wide SIMD and 4x warp 

size. 
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ABSTRACT 

There are a number of design decisions that impact a GPU’s 
performance. Among such decisions deciding the right warp size 
can deeply influence the rest of the design. Small warps reduce 
the performance penalty associated with branch divergence at the 
expense of a reduction in memory coalescing. Large warps 
enhance memory coalescing significantly but also increase branch 
divergence. This leaves designers with two choices: use small 
warps and invest in finding new solutions to enhance coalescing 
or use large warps and address branch divergence employing 
effective control-flow solutions.    

In this work our goal is to investigate the answer to this question. 
We analyze warp size impact on memory coalescing and branch 
divergence.  We use our findings to study two machines: a GPU 
using small warps but equipped with excellent memory coalescing 
(SW+) and a GPU using large warps but employing an MIMD 
engine immune from control-flow costs (LW+).  

Our evaluations show that building coalescing-enhanced small 
warp GPUs is a better approach compared to pursuing a control-
flow enhanced large warp GPU.  

General Terms 
Performance, Design,  

Keywords 
GPU architecture, Warp size, SIMD efficiency, Branch 
divergence, Memory divergence. 

1. INTRODUCTION 
Conventional single-instruction multiple-threads (SIMT) 

accelerators interleave execution of thousands of threads to 
achieve high throughput. Parallel threads overlap the 
communication overhead associated with some threads using 
computations required by other threads to maintain high resource 
utilization. To manage threads efficiently, neighbor threads are 
bundled in groups referred to as warps and processed in lock-step. 
Operating at warp-level granularity simplifies the thread 
scheduling significantly since it can run on fewer schedulable 
elements. In addition, this approach keeps many threads at the 
same pace providing an opportunity to exploit common control-

flow and memory access patterns. Underlying SIMD units are 
more efficiently utilized as a result of executing warps built using 
threads with the same program counter and behavior. In addition, 
memory accesses of neighbor threads within a warp can be 
coalesced to reduce the number of off-core requests.  

Previous studies have shown that GPUs are still far behind 
their potential peak performance as they face two important 
challenges: branch and memory divergence [6, 11]. Upon branch 
divergence, threads at one side of a branch stay active while the 
other side has to become idle. Upon memory divergence, threads 
hitting in cache have to wait for those who miss. At both 
divergences, threads suffer from unnecessary waiting periods. 
This waiting can result in performance loss as it leaves the core 
idle if there are not enough ready threads.  

One of the parameters, which can impact performance (and 
how often the above divergences occur), is warp size. Small 
warps, i.e., warps as wide as SIMD width, reduce the likelihood of 
branch divergence occurrence. Reducing branch divergence 
frequency improves SIMD efficiency by increasing the number of 
active lanes. At the same time, a small size warp reduces memory 
coalescing, effectively increasing the number of memory stalls. 
This can lead to redundant memory accesses and increase pressure 
on the memory subsystem. Large warps, on the other hand, 
exploit potentially existing memory access localities among 
neighbor threads and coalesce them to a few off-core requests. On 
the negative side, bigger warp size can increase serialization and 
the branch divergence impact.  

Figure 1 reports average performance for benchmarks used in 
this study (see methodology for details) for GPUs using different 
warp sizes and SIMD widths. For any specific SIMD width, 
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Figure 2. (a) Coalescing rate, (b) Idle cycle share and (c) Performance under different warp sizes. IPC is normalized to a GPU 

using 32 threads per warp. We report part of the results here (complete results are presented in Section VI). 
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configuring the warp size to 1-2X larger than SIMD width 
provides best average performance. Widening the warp size 
beyond 2X degrades performance.  

In this paper we investigate how warp size impacts 
performance in GPUs. We start with studying GPUs using 
different warp sizes ranging from 8 to 64. We use our analysis to 
investigate the effectiveness of two possible approaches to 
enhance GPUs. The first approach relies on enhancing memory 
coalescing in GPUs using large warps. Once memory coalescing 
is enhanced, this approach uses effective control-flow solutions to 
address the resulting increase in branch divergence. The second 
approach aims at minimizing branch serialization in GPUs using 
small warps. Since small warps affect coalescing negatively, this 
approach requires taking extra steps to address memory stalls. We 
may expect the two approaches to be equally effective as they 
address GPU’s performance degrading issues, memory and branch 
divergence, simultaneously. However, our experimental results 
show that often one outperforms the other.  

In this work we evaluate both approaches and estimate the 
performance return of both solutions. We show that starting with a 
small warp size, and then using dynamic memory divergence 
solutions is a better choice.    

In summary we make the following contributions: 

C We study the impact of warp size on different parameters 
including memory stalls, idle cycles and performance. 

C We use our findings to identify an effective approach to 
enhancing GPU performance. We show that the combination 
of a static and simple approach to deal with branch divergence 
(using small warps) and dynamic memory stall reductions 
solutions is an effective approach. 

C We also investigate the alternative and show that using a 
static solution to enhance coalescing (i.e., using large warps) 
combined with an ideal dynamic control-flow solutions falls 
behind the first approach due to frequent synchronizations of a 
large number of threads. 

The rest of the paper is organized as follows. In Section 2 we 
study background. In Section 3 we review warp size impact. In 
Section 4 we present our machine models. In Section 5 we discuss 
methodology. Section 6 reports experimental results. In Section 7 
we discuss our findings in more detail. In Section 8 we review 
related work. Finally, Section 9 offers concluding remarks.  

2. BACKGROUND 
In this study we focus on SIMT accelerators similar to 

NVIDIA Tesla architecture [12]. Stream Multiprocessors (SMs) 

are deeply multi-threaded processors sharing private non-coherent 
L1 caches among threads. On chip interconnection network 
(crossbar network in this study) is responsible for routing SM off-
chip requests to corresponding memory controllers (MC) and 
delivering the MC respond to the SM.  

Each SM keeps context (including register and shared 
memory) for 1024 threads. An SM has one thread scheduler 
which groups and issues warps on one SIMD group. Threads 
within a warp have one common program counter while control-
flow divergence among threads is managed using re-convergence 
stack [6]. Diverged threads are executed serially until re-
converging at the immediate post-dominator of branch. Re-
convergence point is embedded in the binary and is extracted by 
the architecture during branch execution. 

Instructions from different warps are issued back-to-back 
into the deep 24-stage, 8-wide SIMD pipeline. If the warp pool 
has no ready warp, the pipeline front-end stays idle leading to 
back-end underutilization. Under such circumstances, all the 
warps are issued into the pipeline. However, there are ready 
threads that are inactive/waiting due to branch/memory 
divergence [14]. Inactive threads are those ready to execute 
different diverging paths while waiting threads are those waiting 
at the re-convergence point to get synchronized with other threads 
of the warp. 

The global memory accesses of neighbor threads are 
coalesced to perform scatter/gather operations efficiently. We 
model a coalescing behavior similar to compute compatibility 2.0 
[17]. Requests from neighbor threads accessing the same cache 
line are merged into one request. Neighbor threads are aggregated 
over the entire warp. Consequently, memory accesses of a warp 
are coalesced into one or many cache line accesses. Each line is 
64 bytes. Memory transaction granularity is the same as cache line 
size, which is one stride. 

3. WARP SIZE IMPACT 
In this section we report how warp size impacts memory 

access coalescing, idle cycles, and performance. We do not report 
SIMD efficiency since our observations show that warp size has 
insignificant (less than 1%) impact on activity factor ([10]). See 
Section 5 for methodology. 

Memory access coalescing. Memory accesses made by 
threads within a warp are coalesced into fewer memory 
transactions to reduce bandwidth demand. We measure memory 
access coalescing using the following equation: 
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  (1) 



(a) Baseline microarchitecture 

Figu

We use this definition (equation 1) to estimate coalescing 
this paper.  Figure 2(a) compares coalescing rates for different 
warp sizes. As shown in this figure, increasing the warp size 
improves the coalescing rate in all the benchmarks. An increase in 
warp size can increase the likeliness of memory accesses made to 
the same cache line residing in the same warp. This increase starts 
to diminish for warp sizes beyond 32 threads for most benchmarks 
used here as coalescing width (16 words of 
saturated.  Accordingly, enlarging the warp beyond a specific size, 
returns little coalescing gain.  

Idle cycles. Idle cycles are cycles during which the scheduler 
finds no ready warps in the pool.  Small warps
synchronization to improve latency hiding. At the same time, they 
may increase memory latency by imposing coalescing rate 
reduction overhead. Figure 2(b) reports idle cycle frequency for 
GPUs using different warp sizes. Core idle cycles are 
result of branch/memory divergences which inactivate otherwise 
ready threads [14]. Small warps compensate branch/memory 
divergence by hiding idle cycles (e.g. BFS). On the other hand, 
for some benchmarks (e.g., BKP), small warps lose many 
coalescable memory accesses increasing memory pressure. This 
pressure increases average core idle durations compared to larger 
warps (e.g. BKP). Consequently, the effect of warp size on idle 
cycles depends on the amount of wasted coalescing and obtained 
latency hiding. 

Performance. An increase in warp size can have opposing
impacts on performance.  Performance can improve if an increase 
in memory access coalescing compensates 
overhead imposed by large warps. Performance can suffer if the 
synchronization overhead associated with large warps outweighs 
coalescing memory access gains. Figure 2(c) 
(in terms of instruction per clock or IPC) for GPUs using different 
warp sizes. As reported, in most workloads 
size has significant impact on performance. Performance 
improves in BKP with warp size. Performance is lost in 
warp size increases. Other workloads perform best under average 
warp sizes (16 or 32 threads).  

We conclude from this section that warp si
performance in different ways.  

One possible way to enhance performance is to start with 
small or large warp size and then invest in compensating the 
negative aspects with aggressive solutions. In the remainder of 
this work, we study two machine models and investigate this 
approach further. 

 (b) SW+ microarchitecture   

Figure 3. Machine models compared in this study. 
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negative aspects with aggressive solutions. In the remainder of 
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4. MACHINE MODELS
In this section we introduce two machine models to 

investigate which warp size provides higher performance if their 
deficiency is resolved ideally. Figure 
and the baseline. Our first model is a coalescing
warp machine, referred to as SW+. SW+ uses small warps but 
comes with ideal coalescing. Intuitively we study SW+ to measure 
the performance potential in building small warp machines. Our 
second model represents a control
machine, referred to as LW+.  We use LW+ to estimate the 
performance improvement possible for a processor using a large 
warp size but equipped with an ideal control

4.1 SW+ 
As shown in Figure 3(b), 

(as wide as SIMD width). Small warps reduce branch/memory 
divergence and improve latency hiding and memory level 
parallelism by synchronizing fewer threads at every instruction. 
Small warps lose some coalescing opportunities leading to 
redundant memory accesses. To address the negative side of small 
warps, SW+ is enhanced to address the performance penalty 
associated with uncoalesced accesses. SW+ is equipped with ideal 
coalescing hardware, which coalesces the memory accesses of all 
threads. Ideal coalescing hardware keeps track of outstanding 
memory requests (of all threads) and merges read accesses with 
outstanding accesses whenever possible. This merging captures 
most coalescing opportunities occu
compensating the penalty paid by small warps effectively. In 
summary, SW+ is small warp size machine where the coalescing 
capabilities are extended to coalesce the memory accesses of the 
threads across all warps instead of one warp. 

The motivation behind investigating SW+ is to study if 
investing in a small warp size machine to enhance memory 
coalescing can lead to high performance returns. 

4.2 LW+ 
We investigate LW+ to evaluate if investing in a large warp 

size machine to enhance branch divergence is the right approach. 
As shown in Figure 3(c), LW+ 
larger than the SIMD width). Exploiting large warps facilitates 
efficient usage of memory bandwidth by coalescing memory 
accesses.  

Large warps exacerbate 
divergence. LW+ addresses this issue as both sides of divergence 
are split and actively remain in the warp pool in this machine. 
This splitting does not return considerable performance gain since 
threads may never re-converge
underutilization [7]. Therefore, 

 

(c) LW+ microarchitecture. 

MACHINE MODELS 
In this section we introduce two machine models to 

investigate which warp size provides higher performance if their 
Figure 3 compares these machines 

seline. Our first model is a coalescing-enhanced small 
warp machine, referred to as SW+. SW+ uses small warps but 
comes with ideal coalescing. Intuitively we study SW+ to measure 
the performance potential in building small warp machines. Our 

epresents a control-flow-enhanced large warp 
machine, referred to as LW+.  We use LW+ to estimate the 
performance improvement possible for a processor using a large 
warp size but equipped with an ideal control-flow solution. 

, this machine exploits small warps 
(as wide as SIMD width). Small warps reduce branch/memory 
divergence and improve latency hiding and memory level 
parallelism by synchronizing fewer threads at every instruction. 

me coalescing opportunities leading to 
redundant memory accesses. To address the negative side of small 
warps, SW+ is enhanced to address the performance penalty 
associated with uncoalesced accesses. SW+ is equipped with ideal 

alesces the memory accesses of all 
threads. Ideal coalescing hardware keeps track of outstanding 
memory requests (of all threads) and merges read accesses with 
outstanding accesses whenever possible. This merging captures 
most coalescing opportunities occurring for large warps, 
compensating the penalty paid by small warps effectively. In 
summary, SW+ is small warp size machine where the coalescing 
capabilities are extended to coalesce the memory accesses of the 
threads across all warps instead of one warp.  

The motivation behind investigating SW+ is to study if 
investing in a small warp size machine to enhance memory 
coalescing can lead to high performance returns.  

We investigate LW+ to evaluate if investing in a large warp 
h divergence is the right approach. 

+ groups threads in large warps (8x 
larger than the SIMD width). Exploiting large warps facilitates 
efficient usage of memory bandwidth by coalescing memory 

Large warps exacerbate idle periods imposed by branch 
divergence. LW+ addresses this issue as both sides of divergence 
are split and actively remain in the warp pool in this machine. 
This splitting does not return considerable performance gain since 

converge again leading to SIMD 
, we further enhance this machine 



TABLE 1. Benchmarks characteristics. 

Name Grid Size Block Size #Insn 

BFS: BFS Graph [3] 16x(8,1,1) 16x(512,1) 1.4M 

BKP: Back Propagation [3] 2x(1,64,1) 2x(16,16) 2.9M 

DYN: Dyn_Proc [3] 13x(35,1,1) 13x(256) 64M 

FWAL: Fast Walsh Transform [6] 

6x(32,1,1) 

3x(16,1,1) 

(128,1,1) 

7x(256) 

3x(512) 
11.1M 

GAS: Gaussian Elimination [3] 48x(3,3,1) 48x(16,16) 8.8M 

HSPT: Hotspot [3] (43,43,1) (16,16,1) 76.2M 

MP: MUMmer-GPU++ [8] (1,1,1) (256,1,1) 0.3M 

MTM: Matrix Multiply [14] (5,8,1) (16,16,1) 2.4M 

MU: MUMmer-GPU [1] (1,1,1) (100,1,1) 0.15M 

NNC: Nearest Neighbor on cuda [2] 4x(938,1,1) 4x(16,1,1) 5.9M 

NQU: N-Queen [1] (256,1,1) (96,1,1) 1.2M 

NW: Needleman-Wunsch [3] 

2x(1,1,1) 

… 

2x(31,1,1) 

(32,1,1) 

63x(16) 12.9M 

SC: Scan[14] (64,1,1) (256,1,1) 3.6M 

SR1: Speckle Reducing Anisotropic 
Diffusion [3] (large dataset) 

3x(8,8,1) 3x(16,16) 9.1M 

SR2: Speckle Reducing Anisotropic 
Diffusion [3] (small dataset) 

4x(4,4,1) 4x(16,16) 2.4M 

 

TABLE 2. Baseline configurations for GPGPU-sim. 

NoC 

Total Number of SMs 16 

Number of Memory Ctrls 6 

Number of SM Sharing an Network 
Interface 

2 

SM 

Number of thread per SM 1024 

Maximum allowed CTA per SM 8 

Shared Memory/Register File size 16KB/64KB 

SM SIMD width 8 

Warp Size 8 / 16 / 32 / 64 

L1 Data cache 
48KB: 8-way: LRU: 
64BytePerBlock 

L1 Texture cache 
16KB: 2-way: LRU: 
64BytePerBlock 

L1 Constant cache 
16KB: 2-way: LRU: 
64BytePerBlock 

Clocking 

Core clock 1300 MHz 

Interconnect clock 650 MHz 

DRAM memory clock 800 MHz 

Memory 

Number of Banks Per Memory Ctrls 8 

DRAM Scheduling Policy FCFS 

 

by replacing the SIMD lanes with MIMD cores. Splitting upon 
divergence and using MIMD cores solves both problems. In 
summary, LW+ executes threads of a warp in lock-step and upon 
branch divergence and executes both sides in parallel on MIMD 
underlying hardware. There is no single common program counter 
among threads, and no re-convergence stack. Each thread has its 
own private program counter, which is decoded in parallel to 
other threads. LW+ only follows warp lock-step execution while 
executing the warp threads on underlying MIMD. 

Previous studies have suggested solutions to reduce the 
impact of branch divergence. DWS [14] adaptively splits the warp 
upon branch/memory divergence. DWF [6], TBC [7], LWM [15], 
SBI [2] and SWI [2] propose solutions to capture a considerable 
amount of MIMD performance by SIMD. Exploiting DWS on top 
of TBC or LWM can be viewed as a practical approach in 
building LW+-like processors. LW+ is a many-instruction 
multiple-threads (MIMT) architecture, which is an aggressive 
extension of dual-instruction multiple threads (DIMT) architecture 
exploited by SBI and SWI architecture. LW+ compares how 
performance is affected if conventional SIMT accelerators move 
toward MIMT.  

5. METHODOLOGY 
We modified GPGPU-sim [1] (version 2.1.1b) to model large 

warps and memory coalescing similar to compute compatibility 
2.0 devices [17]. We used the configurations shown in Table 1 to 
model the baseline microarchitecture described in Section 2. 16 

SMs provide peak throughput of 332.8 Gflops. Six 64-bit wide 
memory partitions provide memory bandwidth of 76.8 Gbytes/s at 
dual-data rate. We use an 8-wide SIMD configuration.  

We used a cache block size of 64 bytes, which is equal to 
memory transaction chunks. Our evaluations show increasing 
cache block size (and accordingly transaction chunk) to 128 bytes, 
downgrades the overall performance. 

We used benchmarks from GPGPU-sim [1], Rodinia [3] and 
CUDA SDK 2.3 [16]. We also included MUMmerGPU++ [8] 
third-party sequence alignment program. We use benchmarks 
exhibiting different behaviors: memory-intensiveness, compute-
intensiveness, high and low branch divergence occurrence and 
with both large and small number of concurrent thread-blocks. 
Table 2 shows our benchmarks and their characteristics. 

6. RESUTLS 
In this section, we evaluate SW+, LW+ and processors using 

different warps sizes. In Section 6.1 we present memory access 
coalescing. Idle cycle is reported in 6.2. Finally in Section 6.3 we 
report performance. 

6.1 Memory access coalescing 
Figure 4 reports coalescing rate. As reported, SW+ provides 

the best coalescing rate. SW+ coalesces memory accesses among 
all threads of an SM to achieve this. Widening the coalescing to 
merge accesses from all threads can improve coalescing rate by 



 

Figure 4. Coalescing rate for SW+, LW+ and processors using different warp sizes. 

 

Figure 5. Idle cycle share for SW+, LW+ and processors using different warp sizes.  

 

Figure 6. Performance for SW+ and LW+ and processors using different warp sizes. 
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58% and 34% compared to coalescing width of 32 threads and 64 
threads, respectively. 

LW+ is outperformed by a machine using 64 threads per 
warp. This is due to the fact that LW+’s MIMT execution does 
not keep threads at the same pace to coalesce their accesses. In 
some cases (e.g., MP and MU) splitting the warp upon divergence 
prevents merging memory requests. Under such circumstances, 
redundant memory accesses lead to poor coalescing rate. As we 
show later, this does not translate to performance loss since the 
memory subsystem is not under-pressure in these workloads (MU 
and MP). 

6.2 Idle cycles 
As discussed in Section 2, small warps reduce idle cycles by 

reducing unnecessary waiting due to branch/memory divergence. 
This idle cycle saving is lost partially since small warps lose 
memory access coalescing, pressuring the memory subsystem. 
SW+ addresses this drawback by exploiting ideal coalescing. As 
shown in Figure 5, SW+ shows lowest idle cycle share in most 
workloads. On average, using short warps combined with ideal 
coalescing (SW+), reduces idle cycles by 36%, 21% and 26% 
compared to processors using 8, 16 and 32 threads per warp, 
respectively. 

Our analysis shows synchronizing a large number of threads 
at every instruction increases the number of idle cycles in LW+ 
significantly. 

6.3 Performance 
Figure 6 reports performance for SW+, LW+ and processors 

using different warp sizes. SW+ outperforms all alternatives in 
most benchmarks.  On average, SW+ outperforms LW+, and 
machines using 8, 16 and 32 threads per warp by 11%, 16%, 12% 
and 19%, respectively.  

LW+ synchronizes all threads of the warp at every 
instruction. Even MIMD cores cannot compensate this 
synchronization overhead. Therefore a big part of MIMD’s gain is 
lost due to unnecessary waitings. On average, LW+ outperforms 
processors using 8, 16, 32 and 64 threads per warp by 5%, 1%, 
7% and 15%, respectively. 

7. DISCUSSION 
In this section we comment on some practical implications 

and analyze our results further.  

Insensitive workloads. Warp size affects performance in 
SIMT cores only for workloads suffering from branch/memory 
divergence or showing potential benefits from memory access 



coalescing. Therefore, benchmarks lacking either of these 
characteristics (e.g. FWAL and DYN) are insensitive to warp size. 

Enhancing short warps. Among all configurations, a GPU 
using 8 threads per warp performs worst for many benchmarks 
(e.g., BKP) as it suffers from very low memory coalescing. 
SW+’s investment in addressing this issue comes with 
considerable (up to 95%) returns. However, this machine 
performs well for computation-bounded benchmarks (e.g. BFS, 
MP, MU and NQU), which suffer from branch divergence 
significantly.  

Enhancing large warps. A closer look at the processor 
using 64 threads per warp shows that it performs well for a few 
benchmarks (e.g. BKP, GAS and SR1 and SR2), but falls behind 
for BFS, MU, MP, NNC, NQU and SC which are prone to branch 
divergence. Enhancing this processor with an effective control-
flow solution, however, shows very high (up to a maximum of 
73% in NQU) performance returns. 

Ideal coalescing and write accesses. SW+’s coalescing rate 
is far higher than other machines due to ideal coalescing 
hardware. However, ideal coalescing can only capture the read 
accesses and does not compensate un-coalesced accesses. 
Therefore, SW+ may suffer from un-coalesced write accesses. We 
found this rare as it can be seen only in the MTM benchmark. The 
coalescing rate of SW+ in MTM is higher than other machines 
since it merges many read accesses among warps. However, un-
coalesced write accesses downgrades the overall performance in 
SW+. 

Practical issues with small warps. Pipeline front-end 
includes the warp scheduler, fetch engine, decode and register 
read stages. Using fewer threads per warp affects pipeline front-
end as it requires a faster clock rate to deliver the needed 
workload during the same time period. An increase in the clock 
rate can increase power dissipation in the front-end and impose 
bandwidth limitation issues on the fetch stage. Moreover, using 
short warps can impose extra area overhead as the warp scheduler 
has to select from a larger number of warps. In this study we focus 
on how warp size impacts performance, leaving the area and 
power evaluations to future works.  

Register file. Warp size affects register file design and 
allocation. GPUs allocate all warp registers in a single row [5]. 
Such an allocation allows the read stage to read one operand for 
all threads of a warp by accessing a single register file row. For 
different warp sizes, the number of registers in a row (row size) 
varies according to the warp size to preserve accessibility. Row 
size should be wider for large warps to read the operands of all 
threads in a single row access and narrower for small warps to 
prevent unnecessary reading. 

8. RELATED WORKS 
Mahersi et al. [13] evaluate the impact of warp size on SIMD 

efficiency under perfect memory (zero latency). They found that 
lower warp size returns higher SIMD efficiency. Kerr et al. [10] 
introduced several metrics for characterizing GPGPU workloads. 
Bakhoda et al. [1] evaluated the performance of SIMT 
accelerators for various configurations including interconnection 
networks, cache size and DRAM memory controller scheduling. 
Lashgar and Baniasadi [11] evaluated the performance gap 
between realistic SIMT cores and semi-ideal GPUs to identify 
appropriate investment points.  

Dasika et al. [4] studied SIMD efficiency according to the 
SIMD width. Their study shows the frequent occurrence of 
divergence in the scientific workloads makes wide SIMD 
organizations inefficient in terms of performance/watt.  32-wide 
SIMD is found to be the most efficient design for the studied 
scientific computing workloads. 

Jia et al. [9] introduced a regression model relating the GPU 
performance to microarchitecture parameters such as SIMD 
width, thread block per core and shared memory size. Their study 
did not cover warp size but concluded that SIMD width is the 
most influential parameter among the studied parameter. 

9. CONCLUSION 
Filling the performance gap between current GPUs and their 

potential requires addressing both memory and branch divergence.  

Finding the right configuration of a GPU is perhaps the most 
important decision in achieving high performance. Such static 
decisions, however, influence the dynamic solutions a system 
requires to deal with runtime challenges. Choosing the right warp 
size is one example. Approaching memory coalescing with a static 
solution (using a large size warp) leaves us with the challenge of 
finding effective dynamic control-flow solutions. An alternative 
approach is to deal with control-flow first by using small warps 
and then investigating dynamic solutions to address memory 
coalescing.  

We study the performance potential for both approaches and 
conclude that the latter approach comes with better performance 
returns for benchmarks and configurations used in this work. 
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