
1 

 

 

Fig. 1. Warp size impact on energy efficiency (Energy.Delay2) for 

different SIMD widths, normalized to an 8-wide SIMD and 4x warp size. 
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ABSTRACT—Selecting the right GPU configuration can impact 

the overall design in many ways. One of the critical parameters 

in a GPU is warp size. Smaller warps come with branch 

divergence reduction while larger warps provide better memory 

coalescing.   

In this work we are interested in two possible design choices 

and their impacts on GPUs: using small warps and investing in 

finding new solutions to enhance coalescing or using large warps 

and addressing branch divergence by employing effective 

control-flow solutions. 

We also analyze warp size impact on memory coalescing 

and branch divergence and hence energy. We use our findings to 

study two machines: a GPU using small warps but equipped 

with excellent memory coalescing (SW+) and a GPU using large 

warps but employing an MIMD engine immune from control-

flow costs (LW+). We conclude that SW+ provides better energy 

efficiency when compared to LW+. 

Keywords—GPU architecture, 1Warp size, SIMD efficiency, 

Branch divergence, Memory divergence, Energy efficiency. 

I. INTRODUCTION 

Conventional single-instruction multiple-threads (SIMT) 

accelerators execute thousands of threads simultaneously. In 

order to achieve high throughput with low cost, neighbor 

threads are bundled in warps and executed in lock-step. 

Operating at warp-level granularity keeps many threads at the 

same pace facilitating using common control-flow and 

memory access patterns. SIMD units are better utilized as a 

result of executing warps built using threads with the same 

PC. In addition, warping comes with the advantage of 

coalescing memory accesses of neighbor threads and reduces 

the number of off-core requests.  

GPUs often do not reach their potential peak 

performance as the result of two challenges: branch and 

memory divergence [4, 10]. Both issues result in threads 

suffering from unnecessary waiting periods. This waiting 

harms performance and energy inefficiency as it leaves the 

core idle in the absence of ready threads.  

Warp size is one of the parameters that impacts energy 

efficiency. Small warps, i.e., warps as wide as SIMD width, 

come with less frequent branch divergence occurrence. 

Reducing branch divergence frequency increases the number 

of active lanes hence improving SIMD efficiency. On the 
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other hand, using a small size warp affects memory 

coalescing, which increases the number of memory stalls. 

This can result in redundant and energy consuming memory 

transaction. Using large warps leads to exploiting memory 

access localities among threads within the same warp and 

coalescing them to a few off-core requests.  Bigger warp size 

can increase serialization and the branch divergence impact, 

which increases the number of idle cycles where static energy 

is wasted without contributing to performance.  

Fig. 1 reports average energy efficiency (measured using 

Energy.Delay2) for the benchmarks used in this study (see 

Section V for details) for GPUs using different warp sizes 

and SIMD widths. As reported under a fixed SIMD width, 

configuring employing warp sizes 2-4X larger than SIMD 

width achieves best average energy efficiency.   

Exploiting large warps reduces the energy cost 

associated with thread scheduling dramatically simplifying 

the pipeline front-end logic. Moreover, memory access 

coalescing gain achieved by employing large warps prevents 

redundant energy consuming data transfers. On the other 

hand, large warps may increase the serialization imposed by 

branch/memory divergence consequently leaving the pipeline 

idle while on-core resources are leaking energy.  

In this paper we extend our previous work [11] and study 

the impact of warp size on energy efficiency in GPUs. We 

begin with investigating GPUs with different warp sizes. We 

then study the effectiveness of two alternative solutions. The 
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Fig. 2. (a) Coalescing rate, (b) Idle cycle share, (c) Energy, (d) Performance, and (e) Energy.Delay2 under different warp sizes. Energy and IPC are 
normalized to a GPU using 32 threads per warp. We report part of the results here (complete results are presented in Section VI). 
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first solution uses large warps to reduce off-chip memory 

accesses by enhancing memory coalescing. At the same time, 

we use effective control-flow solutions to address the 

resulting increase in branch divergence. The second solution 

uses small warps and reduces the number of idle cycles by 

minimizing branch serialization. This approach takes extra 

steps to address memory stalls.  

In this work we evaluate both approaches and estimate 

the resulting energy efficiency of both solutions. We show 

that starting with a small warp size, and then using dynamic 

memory divergence solutions is a better choice. 

In summary we make the following contributions: 

@ We study the impact of warp size on different parameters 

including memory stalls, idle cycles, and energy. 

@ We introduce an effective approach to enhance energy 

efficiency in GPUs. We show that the using a static and simple 

approach to deal with branch divergence (using small warps) 

along with dynamic memory stall reductions solutions is an 

effective solution. 

@ We also investigate the alternative and show that using a 

static solution to enhance coalescing (i.e., using large warps) 

along with an ideal dynamic control-flow solution is 

outperformed by the first approach due to frequent 

synchronizations of a large number of threads. 

The rest of the paper is organized as follows. In Section 

II we study background. In Section III we review warp size 

impact. In Section IV we present our machine models. In 

Section V we discuss methodology. Section VI reports 

experimental results. In Section VII we review related work. 

Finally, Section VIII offers concluding remarks.  

II. BACKGROUND 

In this study we focus on SIMT accelerators similar to 

NVIDIA Tesla architecture [14]. Stream Multiprocessors 

(SMs) are deeply multi-threaded processors sharing private 

non-coherent L1 caches among threads. On chip 

interconnection network (crossbar network in this study) is 

responsible for routing SM off-chip requests to corresponding 

memory controllers (MC) and delivering the MC respond to 

the SM.  

Each SM keeps context (including register and shared 

memory) for 1024 threads. An SM has one thread scheduler 

which groups and issues warps on one SIMD group. Threads 

within a warp have one common program counter while 

control-flow divergence among threads is managed using re-

convergence stack [4]. Diverged threads are executed serially 

until re-converging at the immediate post-dominator of 

branch. Re-convergence point is embedded in the binary and 

is extracted by the architecture during branch execution. 

Instructions from different warps are issued back-to-back 

into the deep 24-stage, 8-wide SIMD pipeline. If the warp 

pool has no ready warp, the pipeline front-end stays idle 

leading to back-end underutilization and leakage energy loss. 

Under such circumstances, all the warps are issued into the 

pipeline. However, there are ready threads that are 

inactive/waiting due to branch/memory divergence [16]. 

Inactive threads are those ready to execute different diverging 

paths while waiting threads are those waiting at the re-

convergence point to get synchronized with other threads of 

the warp. 

The global memory accesses of neighbor threads are 

coalesced to perform scatter/gather operations efficiently. We 

model a coalescing behavior similar to compute compatibility 

2.0 [19]. Requests from neighbor threads accessing the same 

cache line are merged into one request. This can enhance 

energy efficiency significantly as it reduces the number of 

energy consuming memory accesses. Neighbor threads are 

aggregated over the entire warp. Consequently, memory 

accesses of a warp are coalesced into one or many cache line 

accesses. Each line is 64 bytes. Memory transaction 

granularity is the same as cache line size, which is one stride. 

III. WARP SIZE IMPACT 

In this section we report how the impact of warp size on 

memory access coalescing, idle cycles, and energy efficiency. 

See Section V for methodology. 

Memory access coalescing. Memory accesses made by 

threads within a warp are coalesced into fewer memory 

transactions to reduce bandwidth demand. We measure 

memory access coalescing using the following equation: 
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  (1) 

Fig. 2(a) reports coalescing under different warp sizes. 

As reported, increasing the warp size enhances coalescing. 



 

(a) Baseline microarchitecture  

Larger warps increase the likeliness of memory accesses 

made to the same cache line residing in the same warp

reducing the number of memory accesses. This effect

diminish for warp sizes beyond 32 threads for most 

benchmarks as coalescing width (16 words of 

becomes saturated. Accordingly, increasing 

a threshold, returns little coalescing gain.  

Idle cycles. Idle cycles are cycles dur

scheduler lacks ready warps in the pool. Small warps 

latency hiding as they reduce thread synchroni

However, they can increase memory latency

coalescing rate. Fig. 2(b) reports idle cycle frequency for 

GPUs using different warp sizes. Core idle cycles can be 

result of branch/memory divergences which inactivate 

otherwise ready threads [16]. Small warps address 

by hiding idle cycles (e.g. MU). For some benchmarks (e.g., 

BKP), small warps lose many coalescable memory a

increasing memory pressure. This pressure in

core idle periods compared to larger warps (e.g. BKP). We 

conclude that the effect of warp size on idle 

on the wasted coalescing and obtained latency hiding.

Energy. Warp size variations impa

dynamic energy (assuming fixed threads per SM). 

Specifically, warp size variations impact the size

scheduler, instruction buffer, and scoreboard unit and 

therefore static power in an SM. Warp size variations im

the dynamic power of an SM by changing 

scheduler, fetch, and decode units access rates

reports energy consumption under different warp sizes. In 

most cases, GPUs using large warps are less energy 

consuming compared to those using small warps. 

warps, energy can be saved if the reduction in

invested in warp scheduling and memory accesses

the leakage increase imposed by branch divergence 

serialization (e.g. BKP, CP, HSPT). Energy consumption

increase if the leakage overhead associated with 

outweighs warp scheduling and memory access 

gains (e.g. MU).  

Performance. Using larger warp size

opposing impacts on performance.  Performan

if the enhanced memory access coalescing outweighs

synchronization overhead imposed by large warps. 

Performance can suffer if the synchronization overhead 

associated with large warps is higher than the coalescing 
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 (b) SW+ microarchitecture   (c) LW+ microarchitecture.

Fig. 3. Machine models compared in this study. 
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reduction in the energy 
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branch divergence 

Energy consumption can 
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memory access reduction 

warp sizes may have 

opposing impacts on performance.  Performance can improve 

ry access coalescing outweighs the 

synchronization overhead imposed by large warps. 

Performance can suffer if the synchronization overhead 

iated with large warps is higher than the coalescing 

memory access gain. Fig. 

different warp sizes. As reported, in most workloads 

presented here, warp size has significa

performance. 

Energy.Delay
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indication of the overall energy efficiency. The numbers 

follow the energy report in 

lower Energy.Delay
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in most cases compared to small warps.

Considering the branch/memory divergence challenges 

and memory access coalescing gains associated with warping, 

there are two approaches to enhancing

of future GPUs. Possible

efficiency are starting with small or large warp size

invest in compensating the negative aspects with aggressive 

solutions. In the remainder of this work, we study two 

machine models and investigate th

IV. MACHINE 

In our previous work [11

models to investigate warp size impact

3 presents the machines and the baseline

represents a coalescing-enhan
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Intuitively we study SW+ to measure t

potential in building small

machine is a control-flow

(LW+). We use LW+ to estimate the 

improvement possible for a processor using a large warp size 

but equipped with an ideal control

section, we discuss the energy aspect of these machines.

A

SW+ suffers from 

disadvantages as the small warp

of schedulable elements). Moreover,

hardware module in SW+ consumes 

compared to small warps. Energy overhead of this machine is 

mainly due to higher number of 

end; warp scheduler, fetch, and decode stages. 

account these overheads in our evaluations.

The motivation behind investigating SW+ is to study if 

investing in a small warp size machine to reduce

access energy consumption 

reduction.  

 

(c) LW+ microarchitecture. 

Fig. 2(d) reports performance for 

different warp sizes. As reported, in most workloads 

presented here, warp size has significant impact on 

(e) reports Energy.Delay
2
 as an 

indication of the overall energy efficiency. The numbers 

follow the energy report in 2(c) where large warps provide 

in most cases compared to small warps. 

Considering the branch/memory divergence challenges 

and memory access coalescing gains associated with warping, 

to enhancing the energy efficiency 

ossible solutions to enhance energy 

with small or large warp sizes and then 

invest in compensating the negative aspects with aggressive 

solutions. In the remainder of this work, we study two 

investigate them further. 

ACHINE MODELS 

11], we introduced two machine 

warp size impact on performance. Fig. 

 presents the machines and the baseline. The first model 

enhanced small warp machine (SW+). 

uses small warps but is equipped with ideal coalescing. 

Intuitively we study SW+ to measure the energy efficiency 

potential in building small warp machines. The second 

flow-enhanced large warp machine 

. We use LW+ to estimate the energy efficiency 

improvement possible for a processor using a large warp size 

ith an ideal control-flow solution. In this 

section, we discuss the energy aspect of these machines. 

A. SW+ 

suffers from the same energy-consumption 

small warps machine (higher the number 

. Moreover, ideal coalescing 

module in SW+ consumes additional energy 

Energy overhead of this machine is 

number of accesses to pipeline front-

end; warp scheduler, fetch, and decode stages. We take into 

in our evaluations. 

The motivation behind investigating SW+ is to study if 

all warp size machine to reduce memory 

access energy consumption leads to an overall energy 
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TABLE 1. BENCHMARKS CHARACTERISTICS. 

Name Grid Size Block Size #Insn 

BFS: BFS Graph [3] 16x(8,1,1) 16x(512,1) 1.4M 

BKP: Back Propagation [3] 2x(1,64,1) 2x(16,16) 2.9M 

CP: Distance-Cutoff  Coulomb 

Potential [1] 
(8,32,1) (16,8,1) 113M 

GAS: Gaussian Elimination [3] 48x(3,3,1) 48x(16,16) 8.8M 

HSPT: Hotspot [3] (43,43,1) (16,16,1) 76.2M 

LPS: Laplace equation on 

regular 3D grid [1] 
(4,25) (32,4) 81.7M 

MP: MUMmer-GPU++ [6] (1,1,1) (256,1,1) 0.3M 

MU: MUMmer-GPU [1] (1,1,1) (100,1,1) 0.15M 

NN: Neural Network [1] 

(6,28) 

(50,28) 

(100,28) 

(10,28) 

(13,13) 

(5,5) 

2x(1,1) 

68.1M 

NNC: Nearest Neighbor [3] 4x(938,1,1) 4x(16,1,1) 5.9M 

NQU: N-Queen [1] (256,1,1) (96,1,1) 1.2M 

RAY: Ray-tracing [1] (16,32) (16,8) 64.9M 

SC: Scan[18] (64,1,1) (256,1,1) 3.6M 

SR1: SRAD [3] (large dataset) 3x(8,8,1) 3x(16,16) 9.1M 

SR2: SRAD [3] (small dataset) 4x(4,4,1) 4x(16,16) 2.4M 

 

TABLE 2. BASELINE CONFIGURATIONS FOR GPGPU-SIM. 

NoC 

#SMs / #memory controllers 16 / 6 

Number of SM Sharing an Network Interface 2 

SM 

#thread per SM / SIMD width 1024 / 32 

Maximum allowed CTA per SM 8 

Shared Memory/Register File size 16KB/64KB 

Warp Size 8 / 16 / 32 / 64 

L1 Data/Texture/Constant cache 64KB : 16KB : 16KB 

Clocking 

Core / Interconnect / DRAM 1300 / 650 / 800 MHz 

Memory 

banks per memory ctrl : DRAM Scheduling Policy 8 : FCFS 

 

B. LW+ 

LW+ exploits the same warp-scheduling energy 

efficiency advantages of large warps. However, the MIMD 

structure behind the LW+ demands multiple concurrent 

fetch/decodes per warp. Accordingly, fetch/decode is 

replicated for each lane increasing the leakage power. In our 

evaluations we assume one fetch/decode unit per lane and 

report the associated energy overhead. 

Previous studies [2, 4, 5, 16, and 17] have suggested 

solutions to reduce the impact of branch divergence. LW+ is 

a many-instruction multiple-threads (MIMT) architecture, 

which is an aggressive extension of dual-instruction multiple 

threads (DIMT) architecture exploited by SBI [2] 

architecture. 

V. METHODOLOGY 

A. PERFORMANCE EVALUATION 

We modified GPGPU-sim [1] (version 2.1.1b) to support 

warps larger than 32-thread and model memory coalescing 

similar to compute compatibility 2.0 devices [19]. We 

configured GPGPU-sim according to parameters shown in 

Table 2. 16 SMs provide peak throughput of 332.8 GFLOPs. 

Six 64-bit wide memory partitions provide memory 

bandwidth of 76.8 Gbytes/s at dual-data rate. We use an 8-

wide SIMD configuration.  

B. ENERGY EVALUATION 

We report our results in the 32 nm manufacturing 

technology. We report Energy.Delay
2
 as an indication of 

energy efficiency. In order to evaluate the power 

consumption of GPGPU-like microarchitecture we used a 

methodology similar to GPU-PowerSim [8] and GPUSimPow 

[7]. We estimate the power of SMs and MCs using McPat 

[13] and their interconnection network using Orion 2.0 [9] as 

follows.  

We retrieve the performance counters and module 

activities using GPGPU-sim. Subsequently these performance 

counters and the configurations listed in Table 2 are given to 

McPat to estimate the static/dynamic power of six MCs and 

16 in-order SIMD multithreaded SMs. 

We use Orion 2.0 to estimate the power consumption of 

the interconnection network among SMs and MCs. We 

assume two crossbars modeling the interconnection network; 

1) SMs to MCs, and 2) MCs to SMs. 

C. WORKLOADS 

We include benchmarks from GPGPU-sim [1], Rodinia 

[3], and CUDA SDK 2.3 [18]. We also included 

MUMmerGPU++ [6] third-party sequence alignment 

program. Our benchmark set exhibits different behaviors: 

memory bounded, computational intensive, high/low branch 

divergence occurrence, and large/small number of concurrent 

threads per SM. Table 1 lists specifications of these 

benchmarks. 

VI. RESULTS 

In this section, we evaluate SW+, LW+ and processors 

using different warps sizes. In Section VI.A we present 

memory access coalescing. Idle cycle is reported in VI.B. In 

Section VI.C we report performance. Finally, in Section VI.D 

we report energy and Energy.Delay
2
. 

A. MEMORY ACCESS COALESCING 

Fig. 4 reports the coalescing rate. As reported, SW+ 

provides the best coalescing rate in most benchmarks. SW+ 

coalesces memory accesses among all threads of an SM to 

achieve this. Widening coalescing to merge accesses from all 

threads can improve coalescing rate by 68% and 40% 

compared to coalescing width of 32 threads and 64 threads, 

respectively. 
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Fig. 4. Coalescing rate for SW+, LW+ and processors using different warp sizes. 

 
Fig. 5. Idle cycle share for SW+, LW+ and processors using different warp sizes.  
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On average, 64-thread per warp machine does better than 

LW+. This is due to the fact that LW+’s MIMT execution 

does not keep threads at the same pace to coalesce their 

accesses. In some cases (e.g., MP and MU) splitting the warp 

upon divergence prevents merging memory requests. Under 

such circumstances, redundant memory accesses degrade 

coalescing rate. However, as we show in VI.D, this does not 

translate to energy loss since the memory subsystem is not 

under-pressure in these workloads (MU and MP). 

B. IDLE CYCLES 

As discussed in Section II, small warps reduce the 

number of idle cycles by reducing unnecessary waiting due to 

branch/memory divergence. This benefits of idle cycle saving 

is partially lost since small warps lose memory access 

coalescing, pressuring the memory subsystem. SW+ 

compensates this drawback by exploiting ideal coalescing. As 

shown in Fig. 5, SW+ shows lowest idle cycle share in most 

workloads. On average, using short warps combined with 

ideal coalescing (SW+), reduces idle cycles by 12%, 8% and 

10% compared to processors using 8, 16 and 32 threads per 

warp, respectively. 

Our analysis shows synchronizing a large number of 

threads at every instruction can significantly increase the 

number of idle cycles in LW+.  

C. PERFORMANCE 

Fig. 6 reports performance for SW+, LW+ and 

processors using different warp sizes. SW+ outperforms other 

machines in most benchmarks. On average, SW+ outperforms 

LW+, and machines using 8, 16 and 32 threads per warp by 

7%, 18%, 15% and 25%, respectively.  

LW+ synchronizes all threads in a warp at every 

instruction. This synchronization is costly for memory 

instructions with memory divergence. Even MIMD cores 

cannot compensate this synchronization overhead. Therefore 

a big part of MIMD’s gain is lost due to unnecessary 

waitings. On average, LW+ outperforms processors using 8, 

16, 32 and 64 threads per warp by 11%, 8%, 17% and 30%, 

respectively. 

D. ENERGY AND ENERGY.DELAY
2
 

Fig. 7 reports energy consumption for SW+, LW+, and 

different warp sizes. SW+ is the second energy hungry 

machine after the 8-thread per warp machine. On average, the 

energy consumption of SW+ and LW+ machine are 30% and 

9% higher than the 32-thread per warp machine, respectively. 

Fig. 8 reports energy efficiency using the Energy.Delay
2
 

metric. On average, SW+ machine is 62% more energy 

efficient than LW+ and 136%, 13%, 4%, and 74% more 

energy efficient than 8-, 16-, 32-, and 64-thread per warp 

machines. 

VII. RELATED WORKS 

Mahersi et al. [15] evaluate the impact of warp size on 

SIMD efficiency under perfect memory (zero latency). They 

found that lower warp size returns higher SIMD efficiency. 

Lashgar et al. [12] introduced DWR to resize warp size 

dynamically to enhance performance. We have extended our 

previous work in [11] and have evaluated energy-efficiency 

of GPUs under different warp sizes. 

VIII. CONCLUSION 

Building energy efficient GPUs requires addressing both 

memory and branch divergence.  

Finding the right microarchitectural configuration of a 

GPU is critical in achieving high energy efficiency. Such 

static decisions, however, influence the dynamic solutions a 

system requires to deal with runtime challenges. Choosing the 

right warp size is one example. Large warp sizes reduce 

memory access frequency and energy consumption but can 

increase leakage energy resulting from frequently occurring 

branch/memory divergences. An alternative approach is to 

deal with control-flow first by using small warps and then 
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Fig. 6. Performance for SW+ and LW+ and processors using different warp sizes. 

 
Fig. 7. Energy for SW+ and LW+ and processors using different warp sizes. 

 
Fig. 8. Energy efficiency for SW+ and LW+ and processors using different warp sizes. 
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investigating dynamic solutions to address memory 

coalescing.  

We study both approaches and conclude that the latter 

approach comes with better energy efficiency returns for the 

benchmarks and configurations used in this work. 
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