
1

Fig. 1. Warp size impact on energy efficiency (Energy.Delay2) for

different SIMD widths, normalized to an 8-wide SIMD and 4x warp size.

Towards Green GPUs: Warp Size Impact Analysis

ABSTRACT—Selecting the right GPU configuration can impact

the overall design in many ways. One of the critical parameters

in a GPU is warp size. Smaller warps come with branch

divergence reduction while larger warps provide better memory

coalescing.

In this work we are interested in two possible design choices

and their impacts on GPUs: using small warps and investing in

finding new solutions to enhance coalescing or using large warps

and addressing branch divergence by employing effective

control-flow solutions.

We also analyze warp size impact on memory coalescing

and branch divergence and hence energy. We use our findings to

study two machines: a GPU using small warps but equipped

with excellent memory coalescing (SW+) and a GPU using large

warps but employing an MIMD engine immune from control-

flow costs (LW+). We conclude that SW+ provides better energy

efficiency when compared to LW+.

Keywords—GPU architecture, 1Warp size, SIMD efficiency,

Branch divergence, Memory divergence, Energy efficiency.

I. INTRODUCTION

Conventional single-instruction multiple-threads (SIMT)

accelerators execute thousands of threads simultaneously. In

order to achieve high throughput with low cost, neighbor

threads are bundled in warps and executed in lock-step.

Operating at warp-level granularity keeps many threads at the

same pace facilitating using common control-flow and

memory access patterns. SIMD units are better utilized as a

result of executing warps built using threads with the same

PC. In addition, warping comes with the advantage of

coalescing memory accesses of neighbor threads and reduces

the number of off-core requests.

GPUs often do not reach their potential peak

performance as the result of two challenges: branch and

memory divergence [4, 10]. Both issues result in threads

suffering from unnecessary waiting periods. This waiting

harms performance and energy inefficiency as it leaves the

core idle in the absence of ready threads.

Warp size is one of the parameters that impacts energy

efficiency. Small warps, i.e., warps as wide as SIMD width,

come with less frequent branch divergence occurrence.

Reducing branch divergence frequency increases the number

of active lanes hence improving SIMD efficiency. On the

 978-1-4799-0623-9/13/$31.00 ©2013 IEEE

other hand, using a small size warp affects memory

coalescing, which increases the number of memory stalls.

This can result in redundant and energy consuming memory

transaction. Using large warps leads to exploiting memory

access localities among threads within the same warp and

coalescing them to a few off-core requests. Bigger warp size

can increase serialization and the branch divergence impact,

which increases the number of idle cycles where static energy

is wasted without contributing to performance.

Fig. 1 reports average energy efficiency (measured using

Energy.Delay2) for the benchmarks used in this study (see

Section V for details) for GPUs using different warp sizes

and SIMD widths. As reported under a fixed SIMD width,

configuring employing warp sizes 2-4X larger than SIMD

width achieves best average energy efficiency.

Exploiting large warps reduces the energy cost

associated with thread scheduling dramatically simplifying

the pipeline front-end logic. Moreover, memory access

coalescing gain achieved by employing large warps prevents

redundant energy consuming data transfers. On the other

hand, large warps may increase the serialization imposed by

branch/memory divergence consequently leaving the pipeline

idle while on-core resources are leaking energy.

In this paper we extend our previous work [11] and study

the impact of warp size on energy efficiency in GPUs. We

begin with investigating GPUs with different warp sizes. We

then study the effectiveness of two alternative solutions. The

Ahmad Lashgar
1,3
, Amirali Baniasadi

2
, Ahmad Khonsari

1,3

1
School of ECE, University of Tehran

2
ECE Department, University of Victoria

3
School of Computer Science, Institute for Research in Fundamental Sciences

a.lashgar@ece.ut.ac.ir, amirali@ece.uvic.ca, ak@ipm.ir

2

Fig. 2. (a) Coalescing rate, (b) Idle cycle share, (c) Energy, (d) Performance, and (e) Energy.Delay2 under different warp sizes. Energy and IPC are
normalized to a GPU using 32 threads per warp. We report part of the results here (complete results are presented in Section VI).

� �� �� ��

�

��

��

��

��

��

��

	�

��

�

BKP CP HSPT MU

C
o

a
le

sc
in

g
 R

a
te

(a)

�%

��%

��%

��%

��%

���%

BKP CP HSPT MU

Id
le

 C
y

cl
e

s

(b)

�

�.�

�

�.�

�

�.�

BKP CP HSPT MU

N
o

rm
a

li
ze

d
 E

n
e

rg
y

(c)

�

�.�

�

�.�

�

BKP CP HSPT MU

N
o

rm
a

li
ze

d
 I

P
C

(d)

�

�

�

�

�

�

�

	

BKP CP HSPT MU

N
o

rm
.

E
n

e
rg

y
.D

e
la

y
�

(e)

first solution uses large warps to reduce off-chip memory

accesses by enhancing memory coalescing. At the same time,

we use effective control-flow solutions to address the

resulting increase in branch divergence. The second solution

uses small warps and reduces the number of idle cycles by

minimizing branch serialization. This approach takes extra

steps to address memory stalls.

In this work we evaluate both approaches and estimate

the resulting energy efficiency of both solutions. We show

that starting with a small warp size, and then using dynamic

memory divergence solutions is a better choice.

In summary we make the following contributions:

@ We study the impact of warp size on different parameters

including memory stalls, idle cycles, and energy.

@ We introduce an effective approach to enhance energy

efficiency in GPUs. We show that the using a static and simple

approach to deal with branch divergence (using small warps)

along with dynamic memory stall reductions solutions is an

effective solution.

@ We also investigate the alternative and show that using a

static solution to enhance coalescing (i.e., using large warps)

along with an ideal dynamic control-flow solution is

outperformed by the first approach due to frequent

synchronizations of a large number of threads.

The rest of the paper is organized as follows. In Section

II we study background. In Section III we review warp size

impact. In Section IV we present our machine models. In

Section V we discuss methodology. Section VI reports

experimental results. In Section VII we review related work.

Finally, Section VIII offers concluding remarks.

II. BACKGROUND

In this study we focus on SIMT accelerators similar to

NVIDIA Tesla architecture [14]. Stream Multiprocessors

(SMs) are deeply multi-threaded processors sharing private

non-coherent L1 caches among threads. On chip

interconnection network (crossbar network in this study) is

responsible for routing SM off-chip requests to corresponding

memory controllers (MC) and delivering the MC respond to

the SM.

Each SM keeps context (including register and shared

memory) for 1024 threads. An SM has one thread scheduler

which groups and issues warps on one SIMD group. Threads

within a warp have one common program counter while

control-flow divergence among threads is managed using re-

convergence stack [4]. Diverged threads are executed serially

until re-converging at the immediate post-dominator of

branch. Re-convergence point is embedded in the binary and

is extracted by the architecture during branch execution.

Instructions from different warps are issued back-to-back

into the deep 24-stage, 8-wide SIMD pipeline. If the warp

pool has no ready warp, the pipeline front-end stays idle

leading to back-end underutilization and leakage energy loss.

Under such circumstances, all the warps are issued into the

pipeline. However, there are ready threads that are

inactive/waiting due to branch/memory divergence [16].

Inactive threads are those ready to execute different diverging

paths while waiting threads are those waiting at the re-

convergence point to get synchronized with other threads of

the warp.

The global memory accesses of neighbor threads are

coalesced to perform scatter/gather operations efficiently. We

model a coalescing behavior similar to compute compatibility

2.0 [19]. Requests from neighbor threads accessing the same

cache line are merged into one request. This can enhance

energy efficiency significantly as it reduces the number of

energy consuming memory accesses. Neighbor threads are

aggregated over the entire warp. Consequently, memory

accesses of a warp are coalesced into one or many cache line

accesses. Each line is 64 bytes. Memory transaction

granularity is the same as cache line size, which is one stride.

III. WARP SIZE IMPACT

In this section we report how the impact of warp size on

memory access coalescing, idle cycles, and energy efficiency.

See Section V for methodology.

Memory access coalescing. Memory accesses made by

threads within a warp are coalesced into fewer memory

transactions to reduce bandwidth demand. We measure

memory access coalescing using the following equation:

��������	
���
� �
������������������

���������������� !����
 (1)

Fig. 2(a) reports coalescing under different warp sizes.

As reported, increasing the warp size enhances coalescing.

(a) Baseline microarchitecture

Larger warps increase the likeliness of memory accesses

made to the same cache line residing in the same warp

reducing the number of memory accesses. This effect

diminish for warp sizes beyond 32 threads for most

benchmarks as coalescing width (16 words of

becomes saturated. Accordingly, increasing

a threshold, returns little coalescing gain.

Idle cycles. Idle cycles are cycles dur

scheduler lacks ready warps in the pool. Small warps

latency hiding as they reduce thread synchroni

However, they can increase memory latency

coalescing rate. Fig. 2(b) reports idle cycle frequency for

GPUs using different warp sizes. Core idle cycles can be

result of branch/memory divergences which inactivate

otherwise ready threads [16]. Small warps address

by hiding idle cycles (e.g. MU). For some benchmarks (e.g.,

BKP), small warps lose many coalescable memory a

increasing memory pressure. This pressure in

core idle periods compared to larger warps (e.g. BKP). We

conclude that the effect of warp size on idle

on the wasted coalescing and obtained latency hiding.

Energy. Warp size variations impa

dynamic energy (assuming fixed threads per SM).

Specifically, warp size variations impact the size

scheduler, instruction buffer, and scoreboard unit and

therefore static power in an SM. Warp size variations im

the dynamic power of an SM by changing

scheduler, fetch, and decode units access rates

reports energy consumption under different warp sizes. In

most cases, GPUs using large warps are less energy

consuming compared to those using small warps.

warps, energy can be saved if the reduction in

invested in warp scheduling and memory accesses

the leakage increase imposed by branch divergence

serialization (e.g. BKP, CP, HSPT). Energy consumption

increase if the leakage overhead associated with

outweighs warp scheduling and memory access

gains (e.g. MU).

Performance. Using larger warp size

opposing impacts on performance. Performan

if the enhanced memory access coalescing outweighs

synchronization overhead imposed by large warps.

Performance can suffer if the synchronization overhead

associated with large warps is higher than the coalescing

3

 (b) SW+ microarchitecture (c) LW+ microarchitecture.

Fig. 3. Machine models compared in this study.

increase the likeliness of memory accesses

e cache line residing in the same warp hence

memory accesses. This effect starts to

 threads for most

 words of 32-bit)

Accordingly, increasing warp size beyond

Idle cycles are cycles during which the

ready warps in the pool. Small warps improve

thread synchronization.

However, they can increase memory latency by reducing

reports idle cycle frequency for

. Core idle cycles can be the

result of branch/memory divergences which inactivate

l warps address divergence

or some benchmarks (e.g.,

BKP), small warps lose many coalescable memory accesses

increasing memory pressure. This pressure increases average

warps (e.g. BKP). We

the effect of warp size on idle cycles depends

wasted coalescing and obtained latency hiding.

ze variations impact both static and

(assuming fixed threads per SM).

Specifically, warp size variations impact the sizes of warp

coreboard unit and

. Warp size variations impact

an SM by changing memory, warp

access rates. Fig. 2(c)

under different warp sizes. In

warps are less energy

small warps. Under large

reduction in the energy

memory accesses exceeds

branch divergence

Energy consumption can

overhead associated with large warps

memory access reduction

warp sizes may have

opposing impacts on performance. Performance can improve

ry access coalescing outweighs the

synchronization overhead imposed by large warps.

Performance can suffer if the synchronization overhead

iated with large warps is higher than the coalescing

memory access gain. Fig.

different warp sizes. As reported, in most workloads

presented here, warp size has significa

performance.

Energy.Delay
2
. Fig. 2(

indication of the overall energy efficiency. The numbers

follow the energy report in

lower Energy.Delay
2
in most cases compared to small warps.

Considering the branch/memory divergence challenges

and memory access coalescing gains associated with warping,

there are two approaches to enhancing

of future GPUs. Possible

efficiency are starting with small or large warp size

invest in compensating the negative aspects with aggressive

solutions. In the remainder of this work, we study two

machine models and investigate th

IV. MACHINE

In our previous work [11

models to investigate warp size impact

3 presents the machines and the baseline

represents a coalescing-enhan

SW+ uses small warps but is equipped with

Intuitively we study SW+ to measure t

potential in building small

machine is a control-flow

(LW+). We use LW+ to estimate the

improvement possible for a processor using a large warp size

but equipped with an ideal control

section, we discuss the energy aspect of these machines.

A

SW+ suffers from

disadvantages as the small warp

of schedulable elements). Moreover,

hardware module in SW+ consumes

compared to small warps. Energy overhead of this machine is

mainly due to higher number of

end; warp scheduler, fetch, and decode stages.

account these overheads in our evaluations.

The motivation behind investigating SW+ is to study if

investing in a small warp size machine to reduce

access energy consumption

reduction.

(c) LW+ microarchitecture.

Fig. 2(d) reports performance for

different warp sizes. As reported, in most workloads

presented here, warp size has significant impact on

(e) reports Energy.Delay
2
 as an

indication of the overall energy efficiency. The numbers

follow the energy report in 2(c) where large warps provide

in most cases compared to small warps.

Considering the branch/memory divergence challenges

and memory access coalescing gains associated with warping,

to enhancing the energy efficiency

ossible solutions to enhance energy

with small or large warp sizes and then

invest in compensating the negative aspects with aggressive

solutions. In the remainder of this work, we study two

investigate them further.

ACHINE MODELS

11], we introduced two machine

warp size impact on performance. Fig.

 presents the machines and the baseline. The first model

enhanced small warp machine (SW+).

uses small warps but is equipped with ideal coalescing.

Intuitively we study SW+ to measure the energy efficiency

potential in building small warp machines. The second

flow-enhanced large warp machine

. We use LW+ to estimate the energy efficiency

improvement possible for a processor using a large warp size

ith an ideal control-flow solution. In this

section, we discuss the energy aspect of these machines.

A. SW+

suffers from the same energy-consumption

small warps machine (higher the number

. Moreover, ideal coalescing

module in SW+ consumes additional energy

Energy overhead of this machine is

number of accesses to pipeline front-

end; warp scheduler, fetch, and decode stages. We take into

in our evaluations.

The motivation behind investigating SW+ is to study if

all warp size machine to reduce memory

access energy consumption leads to an overall energy

4

TABLE 1. BENCHMARKS CHARACTERISTICS.

Name Grid Size Block Size #Insn

BFS: BFS Graph [3] 16x(8,1,1) 16x(512,1) 1.4M

BKP: Back Propagation [3] 2x(1,64,1) 2x(16,16) 2.9M

CP: Distance-Cutoff Coulomb

Potential [1]
(8,32,1) (16,8,1) 113M

GAS: Gaussian Elimination [3] 48x(3,3,1) 48x(16,16) 8.8M

HSPT: Hotspot [3] (43,43,1) (16,16,1) 76.2M

LPS: Laplace equation on

regular 3D grid [1]
(4,25) (32,4) 81.7M

MP: MUMmer-GPU++ [6] (1,1,1) (256,1,1) 0.3M

MU: MUMmer-GPU [1] (1,1,1) (100,1,1) 0.15M

NN: Neural Network [1]

(6,28)

(50,28)

(100,28)

(10,28)

(13,13)

(5,5)

2x(1,1)

68.1M

NNC: Nearest Neighbor [3] 4x(938,1,1) 4x(16,1,1) 5.9M

NQU: N-Queen [1] (256,1,1) (96,1,1) 1.2M

RAY: Ray-tracing [1] (16,32) (16,8) 64.9M

SC: Scan[18] (64,1,1) (256,1,1) 3.6M

SR1: SRAD [3] (large dataset) 3x(8,8,1) 3x(16,16) 9.1M

SR2: SRAD [3] (small dataset) 4x(4,4,1) 4x(16,16) 2.4M

TABLE 2. BASELINE CONFIGURATIONS FOR GPGPU-SIM.

NoC

#SMs / #memory controllers 16 / 6

Number of SM Sharing an Network Interface 2

SM

#thread per SM / SIMD width 1024 / 32

Maximum allowed CTA per SM 8

Shared Memory/Register File size 16KB/64KB

Warp Size 8 / 16 / 32 / 64

L1 Data/Texture/Constant cache 64KB : 16KB : 16KB

Clocking

Core / Interconnect / DRAM 1300 / 650 / 800 MHz

Memory

banks per memory ctrl : DRAM Scheduling Policy 8 : FCFS

B. LW+

LW+ exploits the same warp-scheduling energy

efficiency advantages of large warps. However, the MIMD

structure behind the LW+ demands multiple concurrent

fetch/decodes per warp. Accordingly, fetch/decode is

replicated for each lane increasing the leakage power. In our

evaluations we assume one fetch/decode unit per lane and

report the associated energy overhead.

Previous studies [2, 4, 5, 16, and 17] have suggested

solutions to reduce the impact of branch divergence. LW+ is

a many-instruction multiple-threads (MIMT) architecture,

which is an aggressive extension of dual-instruction multiple

threads (DIMT) architecture exploited by SBI [2]

architecture.

V. METHODOLOGY

A. PERFORMANCE EVALUATION

We modified GPGPU-sim [1] (version 2.1.1b) to support

warps larger than 32-thread and model memory coalescing

similar to compute compatibility 2.0 devices [19]. We

configured GPGPU-sim according to parameters shown in

Table 2. 16 SMs provide peak throughput of 332.8 GFLOPs.

Six 64-bit wide memory partitions provide memory

bandwidth of 76.8 Gbytes/s at dual-data rate. We use an 8-

wide SIMD configuration.

B. ENERGY EVALUATION

We report our results in the 32 nm manufacturing

technology. We report Energy.Delay
2
 as an indication of

energy efficiency. In order to evaluate the power

consumption of GPGPU-like microarchitecture we used a

methodology similar to GPU-PowerSim [8] and GPUSimPow

[7]. We estimate the power of SMs and MCs using McPat

[13] and their interconnection network using Orion 2.0 [9] as

follows.

We retrieve the performance counters and module

activities using GPGPU-sim. Subsequently these performance

counters and the configurations listed in Table 2 are given to

McPat to estimate the static/dynamic power of six MCs and

16 in-order SIMD multithreaded SMs.

We use Orion 2.0 to estimate the power consumption of

the interconnection network among SMs and MCs. We

assume two crossbars modeling the interconnection network;

1) SMs to MCs, and 2) MCs to SMs.

C. WORKLOADS

We include benchmarks from GPGPU-sim [1], Rodinia

[3], and CUDA SDK 2.3 [18]. We also included

MUMmerGPU++ [6] third-party sequence alignment

program. Our benchmark set exhibits different behaviors:

memory bounded, computational intensive, high/low branch

divergence occurrence, and large/small number of concurrent

threads per SM. Table 1 lists specifications of these

benchmarks.

VI. RESULTS

In this section, we evaluate SW+, LW+ and processors

using different warps sizes. In Section VI.A we present

memory access coalescing. Idle cycle is reported in VI.B. In

Section VI.C we report performance. Finally, in Section VI.D

we report energy and Energy.Delay
2
.

A. MEMORY ACCESS COALESCING

Fig. 4 reports the coalescing rate. As reported, SW+

provides the best coalescing rate in most benchmarks. SW+

coalesces memory accesses among all threads of an SM to

achieve this. Widening coalescing to merge accesses from all

threads can improve coalescing rate by 68% and 40%

compared to coalescing width of 32 threads and 64 threads,

respectively.

5

Fig. 4. Coalescing rate for SW+, LW+ and processors using different warp sizes.

Fig. 5. Idle cycle share for SW+, LW+ and processors using different warp sizes.

�

��

���

����

�����

BFS BKP CP GAS HSPT LPS MP MU NN NNC NQU RAY SCN SR� SR� avg

C
o

a
le

sc
in

g
 R

a
te

SW+ � �� �� �� LW+

�%

��%

���%

BFS BKP CP GAS HSPT LPS MP MU NN NNC NQU RAY SCN SR� SR� avg

Id
le

 C
y

cl
e

s

SW+ � �� �� �� LW+

On average, 64-thread per warp machine does better than

LW+. This is due to the fact that LW+’s MIMT execution

does not keep threads at the same pace to coalesce their

accesses. In some cases (e.g., MP and MU) splitting the warp

upon divergence prevents merging memory requests. Under

such circumstances, redundant memory accesses degrade

coalescing rate. However, as we show in VI.D, this does not

translate to energy loss since the memory subsystem is not

under-pressure in these workloads (MU and MP).

B. IDLE CYCLES

As discussed in Section II, small warps reduce the

number of idle cycles by reducing unnecessary waiting due to

branch/memory divergence. This benefits of idle cycle saving

is partially lost since small warps lose memory access

coalescing, pressuring the memory subsystem. SW+

compensates this drawback by exploiting ideal coalescing. As

shown in Fig. 5, SW+ shows lowest idle cycle share in most

workloads. On average, using short warps combined with

ideal coalescing (SW+), reduces idle cycles by 12%, 8% and

10% compared to processors using 8, 16 and 32 threads per

warp, respectively.

Our analysis shows synchronizing a large number of

threads at every instruction can significantly increase the

number of idle cycles in LW+.

C. PERFORMANCE

Fig. 6 reports performance for SW+, LW+ and

processors using different warp sizes. SW+ outperforms other

machines in most benchmarks. On average, SW+ outperforms

LW+, and machines using 8, 16 and 32 threads per warp by

7%, 18%, 15% and 25%, respectively.

LW+ synchronizes all threads in a warp at every

instruction. This synchronization is costly for memory

instructions with memory divergence. Even MIMD cores

cannot compensate this synchronization overhead. Therefore

a big part of MIMD’s gain is lost due to unnecessary

waitings. On average, LW+ outperforms processors using 8,

16, 32 and 64 threads per warp by 11%, 8%, 17% and 30%,

respectively.

D. ENERGY AND ENERGY.DELAY
2

Fig. 7 reports energy consumption for SW+, LW+, and

different warp sizes. SW+ is the second energy hungry

machine after the 8-thread per warp machine. On average, the

energy consumption of SW+ and LW+ machine are 30% and

9% higher than the 32-thread per warp machine, respectively.

Fig. 8 reports energy efficiency using the Energy.Delay
2

metric. On average, SW+ machine is 62% more energy

efficient than LW+ and 136%, 13%, 4%, and 74% more

energy efficient than 8-, 16-, 32-, and 64-thread per warp

machines.

VII. RELATED WORKS

Mahersi et al. [15] evaluate the impact of warp size on

SIMD efficiency under perfect memory (zero latency). They

found that lower warp size returns higher SIMD efficiency.

Lashgar et al. [12] introduced DWR to resize warp size

dynamically to enhance performance. We have extended our

previous work in [11] and have evaluated energy-efficiency

of GPUs under different warp sizes.

VIII. CONCLUSION

Building energy efficient GPUs requires addressing both

memory and branch divergence.

Finding the right microarchitectural configuration of a

GPU is critical in achieving high energy efficiency. Such

static decisions, however, influence the dynamic solutions a

system requires to deal with runtime challenges. Choosing the

right warp size is one example. Large warp sizes reduce

memory access frequency and energy consumption but can

increase leakage energy resulting from frequently occurring

branch/memory divergences. An alternative approach is to

deal with control-flow first by using small warps and then

6

Fig. 6. Performance for SW+ and LW+ and processors using different warp sizes.

Fig. 7. Energy for SW+ and LW+ and processors using different warp sizes.

Fig. 8. Energy efficiency for SW+ and LW+ and processors using different warp sizes.

�

�.�

�

�.�

�

BFS BKP CP GAS HSPT LPS MP MU NN NNC NQU RAY SCN SR� SR� avg

N
o

rm
a

li
ze

d
 I
P

C

SW+ � �� �� �� LW+

�

�

�

�

�

BFS BKP CP GAS HSPT LPS MP MU NN NNC NQU RAY SCN SR� SR� avg

N
o

rm
a

li
ze

d
 E

n
e

rg
y

SW+ � �� �� �� LW+

�

�

�

�

�

�

�

	

�

BFS BKP CP GAS HSPT LPS MP MU NN NNC NQU RAY SCN SR� SR� avg

N
o

rm
a

li
ze

d
 E

n
e

rg
y

.D
e

la
y

�

SW+ � �� �� �� LW+

investigating dynamic solutions to address memory

coalescing.

We study both approaches and conclude that the latter

approach comes with better energy efficiency returns for the

benchmarks and configurations used in this work.

REFERENCES

[1] A. Bakhoda et al. Analyzing CUDA workloads using a detailed GPU
simulator. ISPASS 2009.

[2] N. Brunie et al. Simultaneous Branch and Warp Interweaving for
Sustained GPU Performance. ISCA 2012.

[3] S. Che, et al. Rodinia: A benchmark suite for heterogeneous computing.
IISWC 2009.

[4] W. W. L. Fung et al. Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow. MICRO 2007.

[5] W. W. L. Fung and Tor M. Aamodt. Thread Block Compaction for
Efficient SIMT Control Flow. HPCA 2011.

[6] A. Gharaibeh and M. Ripeanu. Size Matters: Space/Time Tradeoffs to
Improve GPGPU Applications Performance. SC 2010.

[7] GPUSimPow. Available: http://www.aes.tu-berlin.de/menue/forschung
/projekte/gpusimpow_simulator/

[8] GPU-PowerSim. Available: http://www.ideal.ece.ufl.edu/main.php?
action=gpu-powersim

[9] A. B. Kahng, B. Li, L. S. Peh, K. Samadi. ORION 2.0: A power-area
simulator for interconnection networks. IEEE TVLSI Systems, Volume
20, Issue 1, pp 191-196.

[10] A. Lashgar and A. Baniasadi. Performance in GPU Architectures:
Potentials and Distances. 9th Annual Workshop on Duplicating,
Deconstructing, and Debunking (WDDD 2011).

[11] A. Lashgar, et al. Warp Size Impact in GPUs: Large or Small?.
GPGPU6, March 16, 2013.

[12] A. Lashgar, et al. Dynamic Warp Resizing: Analysis and Benefits in
High-Performance SIMT. ICCD 2012 Poster Session. October 1, 2012.

[13] S. Li, et al. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. MICRO 2009.

[14] E. Lindholm et al. NVIDIA Tesla: A Unified Graphics and Computing
Architecture. IEEE Micro, March-April 2008, Volume 28, Issue 2, pp
39-55.

[15] A. Mahesri, et al. Tradeoffs in designing accelerator architectures for
visual computing. MICRO 2008.

[16] J. Meng et al. Dynamic warp subdivision for integrated branch and
memory divergence tolerance. ISCA 2010.

[17] V. Narasiman et al. Improving GPU Performance via Large Warps and
Two-Level Warp Scheduling. MICRO 2011.

[18] NVIDIA Corp. CUDA SDK 2.3. Available:
http://developer.nvidia.com/cuda-toolkit-23-downloads

[19] NVIDIA Crop. CUDA C Programming Guide. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

�.�

