
Submitted to DCMP12 Special Issue 

HARP: Harnessing Inactive Threads in Many-Core Processors       

AHMAD LASHGAR, University of Tehran 
AHMAD KHONSARI, University of Tehran 
AMIRALI BANIASADI, University of Victoria 
 

SIMT accelerators are equipped with thousands of computational resources.  Conventional accelerators, 

however, fail to fully utilize available resources due to branch and memory divergences. This 

underutilization is manifested in two underlying inefficiencies: pipeline width underutilization and 

pipeline depth underutilization. Width underutilization occurs when SIMD execution units are not entirely 

utilized due to branch divergences. This affects lane activity and results in SIMD inefficiency. Depth 

underutilization takes place when the pipeline runs out of active threads and is forced to leave pipeline 

stages idle. This work addresses both inefficiencies by harnessing inactive threads available to the 

pipeline. We introduce Harnessing inActive thReads in many-core Processors (or simply HARP) to improve 

width and depth utilization in accelerators. We show how using inactive yet ready threads can enhance 

performance. Moreover, we investigate implementation details and study microarchitectural changes 

needed to build a HARP-enhanced accelerator. Furthermore, we evaluate HARP under a variety of 

microarchitectural design points. We measure the area overhead associated with HARP and compare to 

conventional alternatives. Under Fermi-like GPUs, we show that HARP provides 10% speedup on average 

(maximum of 1.6X) at the cost of 3.5% area overhead. Our analysis shows that HARP performs better 

under narrower SIMD and shorter pipelines. 

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream 

Architectures (Multiprocessors) 

General Terms: Design, Measurement, Performance  

Additional Key Words and Phrases: Many-core, Accelerator, Multi-threading, Branch divergence, Memory 

divergence 

1. INTRODUCTION 

Many-core accelerators (e.g. GPUs) are built to attain high throughput for massively-

parallel workloads. GPUs employ hundreds of processing units in several cores to run 

groups of parallel scalar threads (referred to as warps) in lockstep. Following this 

single-instruction, multiple-thread (SIMT) approach has resulted in significant and 

steady performance growth in GPUs. 

Modern programmable general-purpose GPUs rely on this performance growth to 

carry data-parallel computations on a wide variety of devices ranging from embedded 

devices [Mijat 2012; Imagination Technologies 2012] to high-performance computing 

systems [Yang et al. 2011]. 

Applications with enough thread level parallelism (TLP) and an adequate share of 

independent threads benefit highly from GPU organizations where warps formed by 

multiple threads travel through the pipeline. Other applications may benefit less 

from GPUs as a result of either low TLP or thread control and data dependences, 

often referred to as branch and memory divergence. 

In this study we view each SIMD processor as a structure with two dimensions; 

pipeline width and pipeline depth. Pipeline width represents the number of parallel 

lanes in SIMD. Pipeline depth represents the number of stages in the core pipeline. 

This two-dimensional structure makes executing multiple threads in parallel possible. 

Tens of threads are grouped into warps and processed in lockstep to utilize the wide 

SIMD of core (pipeline width). Tens of warps are interleaved to occupy the pipeline 

depth and hide the memory access latency. Peak throughput of GPUs is achieved if 

both pipeline width and pipeline depth are fully utilized. 

 

Author’s addresses: a.lashgar@ece.ut.ac.ir, amirali@ece.uvic.ca, ak@ipm.ir 

 



Table 1. Comparing the multithreading trend in NVIDIA GPUs. MT depth denotes 
the number of threads per chip. GFLOPs correspond to peak single-precision 
performance of MAD instruction. [NVIDIA Corp. 2012c; NVIDIA Corp. 2012d] 

 MT depth GFLOPs MTDepth/GFLOPs Register/chip 

GeForce GTX 285 30720 704.2 43.6 480K 

GeForce GTX 580 24576 1581.1 15.5 512K 

GeForce GTX 680 16384 3409.9 4.8 512K 

 

Peak throughput is rarely achieved. Branch divergence reduces the number of 

active threads in warps, degrading width utilization. Memory divergence stalls an 

entire warp, degrading depth utilization. 

Previous works have proposed solutions addressing the above inefficiencies. Some 

earlier studies have enhanced depth utilization through TLP improvement [Fung et 

al. 2007; Meng et al. 2010]. Other solutions have improved width utilization [Fung 

and Aamodt 2011; Narasiman et al. 2011; Rhu and Erez 2012]. The first group 

improves depth utilization while risking width utilization. The second group 

improves width utilization at the cost of TLP reduction, risking depth utilization. 

The trend in NVIDIA GPUs indicates a reduction in chip multithreading-depth 

(number of concurrent threads) per GFLOPs over recent generations. As reported in 

Table 1, GTX 680 comes with significantly lower chip multithreading per GFLOPs 

(MTDepth/GFLOPs) compared to GTX 285. This can be due to the fact that deep 

multithreading harms locality at several levels including on-chip caches [Meng et al. 

2010; Jog et al. 2013] and DRAM scheduling [Yuan et al 2009]. While aggressive 

multithreading fails to guarantee better performance, in order to utilize ever-growing 

computation capability of the chip, future GPU microarchitectures should exploit 

available TLP more effectively. To this end we propose HArnessing inactive thReads 

in many-core Processors (or HARP) as an alternative microarchitectural solution 

aiming at using the available TLP more efficiently and effectively. 

HARP builds on the observation that, frequently enough, there are occasions 

where the GPU is suffering from low width and depth utilization while there are a 

high number of overlooked inactive and ready threads.  

In summary we make following contributions: 

We study conventional and previously suggested control-flow mechanisms and 

investigate their impact on width and depth utilization. By isolating the two 

dimensions we provide better understanding of current and future GPU challenges. 

This view effectively describes the source of underutilization under different 

mechanisms. 

We categorize the status of concurrent threads during pipeline idle cycles, 

highlighting different opportunities for pipeline depth utilization enhancement. For 

example, we show that during pipeline idle cycles, a significant share of threads are 

waiting at inter-block synchronizers, diverging paths, or re-convergence points. 

We propose HARP as a solution that exploits stalled TLP to enhance pipeline 

depth utilization and width utilization. We propose an efficient microarchitecture for 

HARP and evaluate the associated design space to study different 

performance/overhead tradeoffs. 

We evaluate performance under HARP and compare it to previous studies. We 

analyze the sensitivity of our findings under various microarchitectural changes. We 

evaluate the area overhead of HARP. 

The rest of this paper is organized as follows. Section 2 reviews background. 

Section 3 presents our motivation. Section 4 introduces HARP. In Section 5 we 

review related works. Section 6 presents methodology. In Section 7 we evaluate 

HARP and analyze the results.  In Section 8 we evaluate HARP’s overhead. Finally, 

in Section 9 we offer concluding remarks. 



Figure 1. (a) The many-

microarchitecture. We assume 

2. BACKGROUND  

We assume a GPU-like accelerator executing CUDA/OpenCL workloads [NVIDIA 

Corp. 2012a; Khronos Group 

2011]. Figure 1(a) shows the top

miss, a request is sent to the last

banks; one bank per memory

is sent to the corresponding memory controller to access the off

Streaming Multiprocessors (SMs) are SIMD multithreaded processing cores. To hide 

the associated latency, SM interleaves the execution of hundreds of threads assigned 

to it in the thread-block. 

Figure 1(b) depicts the internal microarchitecture of SM.  SM 

employs two parallel 

interleaves the execution of 

SIMD group. Each SIMD group 

instruction for 16 different threads

pipelined. Each SM keeps the context, including registers and shared memory, for 

the total of 1536 concurrent threads

execute over two cycles. Every 

and issues a ready warp from the warp pool if the pipeline is not stalled. Register 

Read stages read operand

accessing a highly banked register file

is virtually associated with each lane 

Each thread in the warp has

over thread lifetime. Therefore all 

file associated with the thread’s lane. 

Grouping threads in a warp enhances SIMD efficiency as threads execute wi

same pace. Moreover, this makes 

robin), which runs at warp

    
-core accelerator used in this study. (b) Stream Multiprocessor (SM) 

assume 16 lanes per SIMD group. 

like accelerator executing CUDA/OpenCL workloads [NVIDIA 

Khronos Group 2012] similar to NVIDIA Fermi [Wittenbrink et al

shows the top-level design of this accelerator. Upon an L

miss, a request is sent to the last-level L2 cache. The L2 cache is partitioned into six 

one bank per memory controller. If the L2 cache misses the data

t to the corresponding memory controller to access the off

Streaming Multiprocessors (SMs) are SIMD multithreaded processing cores. To hide 

the associated latency, SM interleaves the execution of hundreds of threads assigned 

block.  

depicts the internal microarchitecture of SM.  SM pipeline frontend 

employs two parallel independent single-issue warp schedulers. Each scheduler 

interleaves the execution of 768 threads and issues instructions on 

Each SIMD group is a 16-lane SIMD engine executing

different threads in parallel. SIMD groups are in-order and fully

Each SM keeps the context, including registers and shared memory, for 

concurrent threads. 32 threads are grouped into one 

cycles. Every two cycles, issue warp stage of each scheduler

and issues a ready warp from the warp pool if the pipeline is not stalled. Register 

Read stages read operands of active threads in one-half of warp concurrently by 

accessing a highly banked register file. One 4-port (three reads/one write) register file 

is virtually associated with each lane to conserve register file bandwidth demand. 

Each thread in the warp has a unique lane identifier (ID), which does not change 

over thread lifetime. Therefore all registers of a thread are allocated in the register 

file associated with the thread’s lane.  

Grouping threads in a warp enhances SIMD efficiency as threads execute wi

same pace. Moreover, this makes it possible to use a simplified scheduler (e.g., round

robin), which runs at warp-granularity. On the other hand, warp-level granularity 

 
. (b) Stream Multiprocessor (SM) 

like accelerator executing CUDA/OpenCL workloads [NVIDIA 

Wittenbrink et al. 

Upon an L1 cache 

partitioned into six 

 cache misses the data, the request 

t to the corresponding memory controller to access the off-chip DRAM. 

Streaming Multiprocessors (SMs) are SIMD multithreaded processing cores. To hide 

the associated latency, SM interleaves the execution of hundreds of threads assigned 

pipeline frontend 

warp schedulers. Each scheduler 

on its dedicated 

engine executing the same 

order and fully-

Each SM keeps the context, including registers and shared memory, for 

 threads are grouped into one warp and 

of each scheduler selects 

and issues a ready warp from the warp pool if the pipeline is not stalled. Register 

of warp concurrently by 

port (three reads/one write) register file 

to conserve register file bandwidth demand. 

, which does not change 

thread are allocated in the register 

Grouping threads in a warp enhances SIMD efficiency as threads execute with the 

a simplified scheduler (e.g., round-

level granularity 



Figure 2. Interleaved execution of two warps 

consequences: Reducing the number of active threads in diverging paths leaving some lanes 

idle. If active threads (at basic block B, C, D or E) execute long latency instructions, there 

will be no ready warp to hide this 

executing C to the reduce number of idle lanes, and ii) exploiting

hide the latency if all warps are pending.

imposes two types of divergences, which can potentially harm

divergence and branch 

memory instruction. Upon accessing the cache, a warp may diverge into hit

and miss-threads. Hit-threads are threads that find the data in cache. However, lock

step warping execution stalls force hit

missed the data in cache. 

branch instructions. If branches in a warp behave differently, the warp diverges into 

taken and not-taken threads. Control

of divergence. Current GPUs from NVIDIA use stack

manage branch divergence

serially and joins the diverged threads at the end of the diverging paths. 

In the remainder of background we present an overview of the previous

proposed control-flow mec

mechanism impacts pipeline depth/width

2.1 Stack-based Re-convergence

Upon executing a branch instruction, threads of a warp can have different outcomes. 

As a result, threads can diverge to 

accelerators use stack

program counters associated with 

the warp. 

SBR executes the diverged threads serially.

facilitate this. Each entry of stack has three fields: logical program counter (PC), 

corresponding threads, and re

convergence point is where all diverging paths eventually rejoin.

Upon encountering a diverging branch, the PC of the top entry is replaced with 

the re-convergence point of the branch. Based on the number of diverging sides, one 

or two entries are pushed to keep track of the diverging paths. For these new entries, 

RPC is stored to prevent execution of the diverged threads beyond the re

point. The PC of the top entry is the physical program counter of the warp. As the PC 

of the top entry reaches its RPC, the top entry is popped and execution continues 

following the new top of the stack. 

in [Fung et al. 2007]. Figure 

diverging paths of the given control

      
Interleaved execution of two warps (W0 and W1) under SBR

onsequences: Reducing the number of active threads in diverging paths leaving some lanes 

idle. If active threads (at basic block B, C, D or E) execute long latency instructions, there 

will be no ready warp to hide this latency. Opportunities: i) merging W0

executing C to the reduce number of idle lanes, and ii) exploiting inactive/waiting threads to 

hide the latency if all warps are pending. 

imposes two types of divergences, which can potentially harm performance; 

 divergence. Memory divergence may occur upon executing a 

memory instruction. Upon accessing the cache, a warp may diverge into hit

threads are threads that find the data in cache. However, lock

ing execution stalls force hit-threads to wait for miss-threads, which have 

missed the data in cache. Branch divergence may occur upon executing conditional 

branch instructions. If branches in a warp behave differently, the warp diverges into 

taken threads. Control-flow mechanism is needed to handle this type 

of divergence. Current GPUs from NVIDIA use stack-based re-convergence (SBR) to 

manage branch divergence [Collange 2011]. SBR effectively executes diverging paths 

iverged threads at the end of the diverging paths. 

In the remainder of background we present an overview of the previous

flow mechanisms. In the next section, we discuss

pipeline depth/width utilization. 

convergence 

Upon executing a branch instruction, threads of a warp can have different outcomes. 

As a result, threads can diverge to different program counters (PCs)

accelerators use stack-based re-convergence (SBR) [Fung et al. 

program counters associated with the diverged threads as logical program counters of 

SBR executes the diverged threads serially. SBR uses a stack per 

. Each entry of stack has three fields: logical program counter (PC), 

corresponding threads, and re-convergence point program counter (RPC). The re

convergence point is where all diverging paths eventually rejoin. 

Upon encountering a diverging branch, the PC of the top entry is replaced with 

convergence point of the branch. Based on the number of diverging sides, one 

or two entries are pushed to keep track of the diverging paths. For these new entries, 

stored to prevent execution of the diverged threads beyond the re

point. The PC of the top entry is the physical program counter of the warp. As the PC 

of the top entry reaches its RPC, the top entry is popped and execution continues 

the new top of the stack. A detailed operation example of SBR can be found 

Figure 2 depicts the interleaved execution of two warps inside 

diverging paths of the given control-flow graph.  

 

 
under SBR. Negative 

onsequences: Reducing the number of active threads in diverging paths leaving some lanes 

idle. If active threads (at basic block B, C, D or E) execute long latency instructions, there 

0 and W1 upon 

inactive/waiting threads to 

performance; memory 

may occur upon executing a 

memory instruction. Upon accessing the cache, a warp may diverge into hit-threads 

threads are threads that find the data in cache. However, lock-

threads, which have 

may occur upon executing conditional 

branch instructions. If branches in a warp behave differently, the warp diverges into 

flow mechanism is needed to handle this type 

convergence (SBR) to 

. SBR effectively executes diverging paths 

iverged threads at the end of the diverging paths.  

In the remainder of background we present an overview of the previously 

discuss how each 

Upon executing a branch instruction, threads of a warp can have different outcomes. 

s (PCs). Current 

et al. 2007] to store 

l program counters of 

tack per warp to 

. Each entry of stack has three fields: logical program counter (PC), 

convergence point program counter (RPC). The re-

Upon encountering a diverging branch, the PC of the top entry is replaced with 

convergence point of the branch. Based on the number of diverging sides, one 

or two entries are pushed to keep track of the diverging paths. For these new entries, 

stored to prevent execution of the diverged threads beyond the re-convergence 

point. The PC of the top entry is the physical program counter of the warp. As the PC 

of the top entry reaches its RPC, the top entry is popped and execution continues 

of SBR can be found 

interleaved execution of two warps inside 



2.2 Dynamic Warp Formation  

Dynamic Warp Formation (DWF) [Fung et al. 2007] terminates warps upon commit; 

regrouping their threads into new/existing warps to maximize warp occupation. DWF 

performs similar to SBR for branches behaving coherently across all threads of the 

warp. Upon branch divergence, threads are grouped into different warps to 

interleave the execution of diverging paths. DWF occupies the empty lanes of the 

diverged warps by placing the other diverged threads into empty lanes. DWF 

employs a small lookup table to search for merging opportunities.  

The main challenge with DWF is that the diverged threads may never re-converge 

again. Therefore, DWF may result in constructing multiple combinable less-occupied 

warps running at different paces. DWF can jeopardize pipeline width utilization due 

to re-convergence misses.  

2.3 Large Warp Microarchitecture 

Large Warp Microarchitecture (LWM) [Narasiman et al. 2011] groups hundreds of 

threads into larger warps. LWM keeps track of divergence using a larger re-

convergence stack. Unlike SBR, LWM compacts active threads at the top of stack into 

multiple sub-warps (warps as wide as SIMD), maximizing warps’ occupations. Sub-

warps are constructed at the issue warp stage. Sub-warps are executed and 

synchronized at each instruction. This policy effectively improves the number of 

active lanes in the SIMD group. LWM, however, can result in stalling a high number 

of threads due to large warp synchronization, which in turn exacerbates the negative 

consequences of branch/memory divergence. 

 

3. MOTIVATION 

GPUs achieve high throughput by utilizing the SM’s SIMD pipeline. Achieving 

steady and high throughput computation requires effective utilization of both 

pipeline depth and pipeline width (SIMD width).  

Threads belonging to the same warp utilize the pipeline width (also referred to as 

lane activity). Concurrent warps running on different SM pipeline stages occupy the 

pipeline depth. In this section, we first show how SBR impacts pipeline depth and 

width utilization. Second, we show that there is a large group of stalled threads, 

which can be activated to improve pipeline depth utilization. We investigate this 

opportunity and comment on how it can be used to achieve high pipeline depth and 

width utilization simultaneously.  

3.1 Pipeline Depth Utilization 

SIMD stays idle if the pipeline front-end does not find any eligible instruction to 

issue. This can occur frequently as a result of instruction dependency on long latency 

load instructions. We measure the pipeline depth utilization according to following 

equation:  �������������	����
�����  � � ����������      (1) 

Where the idleCycles is the rate of cycles where SIMD has no active lane. When 

warp-level parallelism is not high enough to hide memory latency, depth utilization 

drops. 

Figure 3 reports pipeline depth utilization for different benchmarks under SBR 

(see Section 6 for methodology). Depth utilization is high in benchmarks having 

enough active warps to hide memory latency (CP, HSPT, and PF). However, in many 

benchmarks, the available warp-level parallelism is not enough to hide memory 

latency effectively. Accordingly, the pipeline experiences idle cycles frequently, 

degrading depth utilization. 



 
Figure 3. Pipeline depth utilization. 

 
Figure 4. Pipeline width utilization. 

0%

20%

40%

60%

80%

100%

BFS BKP CP FWAL HSPT LPS MP MTM MU NQU NW PF RAY

0%

20%

40%

60%

80%

100%

BFS BKP CP FWAL HSPT LPS MP MTM MU NQU NW PF RAY

Oracle SBR

3.2 Pipeline Width Utilization 

Pipeline width utilization drops due to 1) branch divergence within a warp or 2) 

inherently, having few threads in a warp. The former happens frequently in 

applications with data-dependent control-flow divergence. The latter happens when 

the thread-block size is less than SIMD width. As a result, warps end up having a 

few active threads, underutilizing the pipeline width.  

We use lane activity (below) to measure pipeline width utilization:  

�������������  ��� � � ������� !"#$�%&&'(&%)*+�"  ,- �./012"���         (2) 

where n_issues is the number of cycles where at least one SIMD lane is active, 

act_thds[i] is the number of active lanes in the ith cycle, and SIMDWidth is the 

number of lanes in SIMD. Notice that the equation (2) ignores idle cycles focusing 

solely on width utilization. 

SBR-based solutions lose lane activity as they mask diverged threads not 

belonging to the current physical PC. In Figure 4 we report lane activity for the 

benchmark set used in this study. The left bar for each benchmark (Oracle) 

represents a perfect control-flow solution. To model the Oracle mechanism, we 

perform two simulation steps for each kernel. First we obtain a trace file of the 

individual PCs that each thread executes. Then, we group the same PCs of different 

threads to form warps with maximum lane activity. The grouping also operates 

under two constraints: i) threads cannot change lane in warp, and ii) only threads 

within the same thread-block can be grouped into the same warp. This unrealistic 

approach provides an upper bound for lane activity under dynamic regrouping 

methods. As reported in Figure 4, in benchmarks with coherent control-flow, pipeline 



 
Figure 5. Concurrent threads breakdown during SM idle cycles. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BFS BKP CP FWAL HSPT LPS MP MTM MU NQU NW PF RAY

S
h
a
re
 o
f 
id
le
 c
y
cl
es
 i
n
 t
o
ta
l 
co
re
 c
y
cl
es

C
o
n
cu
rr
en
t 
th
re
a
d
s 
d
u
ri
n
g
 i
d
le
 c
y
cl
es

Stalled by instruction dependency Waiting on thread-block barrier

Waiting on Re-convergence Barrier Marked as inactive in diverging path

share of idle cycle

width is fully utilized (e.g. CP and MTM). However, data-dependent control-flow 

divergence frequently occurs in many benchmarks resulting in a significant drop in 

width utilization (e.g. BFS, MU, and MP). 

3.3 Unexploited TLP 

GPUs lose performance when SMs become idle. Figure 5 presents the share of SM 

idle cycles in the overall program execution time. As reported, up to 89% of the cycles 

can be idle. Figure 5 also reports the status of concurrent threads during idle cycles. 

During idle cycles, the majority of threads are stalled due to instruction dependency, 

usually a long latency memory fetch. A considerable number of threads wait at intra-

thread-block barriers for other threads of thread-block. The remaining threads are 

stalled due to SBR’s branch divergence management policy; i) threads marked as 

inactive in diverging paths or ii) threads waiting at re-convergence barrier. These 

threads can account for as much as 37% of the entire thread pool (in MU benchmark). 

Below we discuss these groups in more detail and highlight the opportunity available 

to improve pipeline depth utilization. 

3.3.1 Stalled threads 

Inactive threads. These threads are stalled due to the re-convergence stack 

organization (not instruction or control dependency). The stack only activates one 

side of the divergence leaving the other sides’ threads inactive. The number of 

inactive threads can grow rapidly with warp size and/or the number of nested two-

sided conditional branches. This group of threads may include many ready, yet 

inactive threads. 

Re-converging threads. SBR’s re-convergence policy requires keeping threads 

of the same warp waiting at the re-convergence point. This waiting period is longer 

when the diverging paths of a branch are imbalanced or there is a costly 

unstructured control-flow [Diamos et al. 2011].  



3.3.2 Opportunity  

An SIMD group may be idle despite having a significant number of ready but stalled 

threads. Inactive threads or waiting at re-convergence threads, if activated, can 

proceed to improve pipeline depth utilization. Below we argue how each type of 

threads can be exploited. 

First, inactive threads can be grouped into new warps to execute diverging paths 

independently in parallel. This could enhance the pipeline depth utilization by 

including the ignored ready threads in the ready warp pool. It should be noted that 

executing inactive threads beyond the re-convergence point can compromise lane 

activity (width utilization). This may occur as a result of multiple combinable warps 

executing the same re-convergence point. Therefore, enhancing pipeline depth 

utilization has to stay aware of re-convergence benefits to assure maintaining 

pipeline width utilization. 

Second, the threads waiting at re-convergence point can form new warps to 

proceed and improve depth utilization. In order to enhance depth utilization while 

protecting lane activity, instead of relaxing all re-convergence synchronization, we 

rely on synchronizing fewer threads (as many as SIMD width). Consequently, we 

reduce the number of threads waiting at re-convergence point while preventing lane 

activity loss.  

4. HARP 

We propose HARP to improve pipeline depth and width utilization. HARP takes the 

following measures to achieve this goal: 

Pipeline width:  HARP regroups diverged threads into new warps. The newly 

dynamically constructed warps use threads from different warps to increase lane 

activity. At the same time, HARP uses re-convergence points to protect against low 

SIMD efficiency. 

Pipeline depth: HARP improves TLP to increase depth utilization. All diverged 

threads are activated so threads from diverged paths can execute simultaneously. 

Moreover, threads are grouped into small warps (as wide as SIMD width) to reduce 

the number of threads waiting at re-convergence point. 

Below we describe HARP in more detail. In Section 4.1, we provide a high-level 

description. In Section 4.2, we present HARP’s microarchitecture details. In Section 

4.3, we present an operation example.   

4.1 High-Level Description 

HARP exploits existing stalled threads to improve TLP. HARP constructs up to two 

independent schedulable warps after a branch divergence. Under HARP, both 

divergence sides remain active and can potentially hide the other side’s latency, 

improving depth utilization. The diverged warps of the same branch are 

synchronized at the re-convergence point to revive pre-divergence warps. HARP 

constructs smaller warps (as wide as SIMD width) to mitigate the number of threads 

stalling at the re-convergence point.  

HARP maintains lane activity (in the presence of branch divergence) by 

dynamically regrouping diverged threads from different warps into new warps. 

Accordingly, HARP retains recently constructed warps in a small lookup table, 

separated from the scheduling pool. Upon warp divergence and before constructing 

new warps, HARP searches the lookup table for merging possibilities. Diverged 

threads are merged with warps with the same program counter and without lane 

conflict. Otherwise, a maximum of two new warps are constructed using the diverged 

threads failing to merge with existing warps in the lookup table.  

Re-convergence is necessary to protect lane activity. HARP employs re-

convergence by taking the following steps. Upon branch divergence, HARP 



Figure 6. Tentative comparison of 

by Fung and Aamodt [2011

have a single instruction. We assume that each instruction

single thread. We also assume block B executes a long latency instruction (e.g., memory 

access) taking two time units. SBR suffers from low lane activity under d

C. Moreover, pipeline stays idle during the long latency access in B. DWF improves lane 

activity by regrouping diverged threads into new warps and hides B’s long latency access using 

threads from C. However, DWF misses the re

combinable warps at D. LWM keeps a large number of threads at the same pace and compacts 

stack’s top active mask to improve width utilization. However, LWM still suffers from depth 

underutilization when running B. HARP 

width) and interleaves the execution of diverging paths (improving depth utilization). HARP 

achieves higher pipeline depth utilization by reducing the inter

overhead. However, HARP’s 

finds less merging opportunities compared to compaction

invalidates the diverging warp (also referred to as 

constructs two new warps at diverging paths. 

rejoin these warps at the re

convergence point and diverged threads. Subsequently, the scheduler interleaves the 

execution of these new warps, executing different divergi

Once new warps reach the re

this point, the barrier associated with the warp and re

threads of warps reaching the barrier as ‘reached’. When all 

divergence-warp have reached the re

threads as ‘reached’. At this time, the barrier reincarnates the 

and the scheduler continues the execution of the warp at the re

Figure 6 provides better understanding

impacts performance. Diverging paths (including 

execution under different control

SBR, DWF, LWM, TBC, and HARP. 

TBC (the other mechanism

behave similarly since each 

4.2 Microarchitecture 

Figure 7 shows HARP implementation for a single 

of 4 tables: First-Level warps 

Re-convergence Barriers (

stores the active warps in two ta

Level (q) stores a limited number of ready warps scheduled for execution. 

stores the remaining portion of active warps in Second

eventually moves to First

 
Tentative comparison of HARP execution to previous works. Adapted from a figure 

2011]. Code block D has two instructions whereas other code bloc

have a single instruction. We assume that each instruction takes one time unit to execute a 

single thread. We also assume block B executes a long latency instruction (e.g., memory 

access) taking two time units. SBR suffers from low lane activity under diverging paths B and 

C. Moreover, pipeline stays idle during the long latency access in B. DWF improves lane 

activity by regrouping diverged threads into new warps and hides B’s long latency access using 

threads from C. However, DWF misses the re-convergence opportunity and executes multiple 

combinable warps at D. LWM keeps a large number of threads at the same pace and compacts 

stack’s top active mask to improve width utilization. However, LWM still suffers from depth 

underutilization when running B. HARP dynamically regroups diverged threads (improving 

width) and interleaves the execution of diverging paths (improving depth utilization). HARP 

achieves higher pipeline depth utilization by reducing the inter-threads synchronization 

overhead. However, HARP’s width utilization can be lower than LWM if dynamic regrouping 

finds less merging opportunities compared to compaction.  

invalidates the diverging warp (also referred to as the pre-divergence-

constructs two new warps at diverging paths. Concurrently, a barrier is reserved to 

rejoin these warps at the re-convergence point. The barrier is unique for the re

convergence point and diverged threads. Subsequently, the scheduler interleaves the 

execution of these new warps, executing different diverging paths independently. 

Once new warps reach the re-convergence point, the scheduler invalidates them. At 

barrier associated with the warp and re-convergence point marks the 

threads of warps reaching the barrier as ‘reached’. When all threads of the 

warp have reached the re-convergence point, the barrier marks all 

threads as ‘reached’. At this time, the barrier reincarnates the pre-divergence

and the scheduler continues the execution of the warp at the re-convergence

provides better understanding of how pipeline depth/width 

Diverging paths (including threads) are presented 

execution under different control-flow mechanisms is presented in 6(b

R, DWF, LWM, TBC, and HARP. We assume eight threads per warp for LWM and 

TBC (the other mechanisms have four threads per warp). LWM and TBC 

each diverging path has a single instruction. 

implementation for a single SM. The implementation consists 

Level warps (q), Second-Level warps (w), Lookup tables (

convergence Barriers (r). In order to achieve low-overhead scheduling, 

stores the active warps in two tables (t) (i.e. First-Level and Second

) stores a limited number of ready warps scheduled for execution. 

stores the remaining portion of active warps in Second-Level (w). This group of warps 

eventually moves to First-Level table for execution. Lookup tables (

 
Adapted from a figure 

]. Code block D has two instructions whereas other code blocks 

takes one time unit to execute a 

single thread. We also assume block B executes a long latency instruction (e.g., memory 

iverging paths B and 

C. Moreover, pipeline stays idle during the long latency access in B. DWF improves lane 

activity by regrouping diverged threads into new warps and hides B’s long latency access using 

ce opportunity and executes multiple 

combinable warps at D. LWM keeps a large number of threads at the same pace and compacts 

stack’s top active mask to improve width utilization. However, LWM still suffers from depth 

dynamically regroups diverged threads (improving 

width) and interleaves the execution of diverging paths (improving depth utilization). HARP 

threads synchronization 

width utilization can be lower than LWM if dynamic regrouping 

-warp here) and 

rrently, a barrier is reserved to 

convergence point. The barrier is unique for the re-

convergence point and diverged threads. Subsequently, the scheduler interleaves the 

ng paths independently. 

convergence point, the scheduler invalidates them. At 

convergence point marks the 

threads of the pre-

convergence point, the barrier marks all 

divergence-warp 

convergence point. 

pipeline depth/width utilization 

are presented in 6(a). The 

b). We compare 

We assume eight threads per warp for LWM and 

LWM and TBC appear to 

implementation consists 

), Lookup tables (e), and 

overhead scheduling, HARP 

Level and Second-Level). First-

) stores a limited number of ready warps scheduled for execution. HARP 

). This group of warps 

or execution. Lookup tables (e) are used to 



Figure 7. 

 
store diverged threads waiting to be merged. Warps in Lookup tables depart to 

Second-Level eventually. Re

synchronize the threads of diverged warps at the re

the table is a barrier and consists of re

identifiers of the threads that must be synchronized at the RPC, and the vector ma

indicating which threads have reached the barrier. Below we provide further 

information on Lookup and Re

table transition policies

4.2.1 Lookup 

The Ready-Lookup table (
intended to occupy the empty lanes of upcoming diverged warps if 

diverged threads to any warp in the Ready

warp should have the same program co

merging warp should not have lane co

Merging opportunities increase if the warps remain in Ready

On the negative side, keeping warps for long period deprives the 

ready warps, lowering depth

under such circumstances we used Waiting

long latency memory access

Lookup table upon decoding a global memory access instruction. Due to the low 

average hit rate of the 

evaluated in this study)

cycles during which the warp remains in Waiting

execute the same instruction can merge with this warp (under the conditions used for 

Ready-Lookup table). Waiting

diverged warps execute memory instructions. The warps in Waiting

depart back to Second-Level eventually, when the pending memory access completes.

4.2.2 Re-convergence B

Each entry in the re-convergence table is a barrier synchronizing a group of threads 

at the RPC. The barrier maintains a vector mask tracking the threads that have 

reached the RPC. Once all threads reach the RPC, the reincarnated warp is send to 

Second-Level scheduler, turning in to an active warp.

 
1 Merging diverged threads can result in constructing new warps from arbitrary threads. Therefore, 

implicit synchronization is not guaranteed for all threads.

 
. Issue warp stage of HARP control-flow mechanism. 

store diverged threads waiting to be merged. Warps in Lookup tables depart to 

Level eventually. Re-convergence Barriers table (r) reserves a

synchronize the threads of diverged warps at the re-convergence point. Each entry of 

the table is a barrier and consists of re-convergence program counter (RPC), 

identifiers of the threads that must be synchronized at the RPC, and the vector ma

indicating which threads have reached the barrier. Below we provide further 

information on Lookup and Re-convergence Barriers tables. Then we discuss table

table transition policies and HARP’s design space. 

Lookup table (y) maintains the recently diverged warps, which are 
intended to occupy the empty lanes of upcoming diverged warps if possible

diverged threads to any warp in the Ready-Lookup table is subject to: 

warp should have the same program counter as the diverged thread

merging warp should not have lane conflict with the diverged thread. 

Merging opportunities increase if the warps remain in Ready-Lookup table

On the negative side, keeping warps for long period deprives the pipeline 

depth utilization. In order to maintain merging opportunities 

under such circumstances we used Waiting-Lookup table (u) and take advantage of 

long latency memory accesses. Warps residing in First-Level depart to Wai

Lookup table upon decoding a global memory access instruction. Due to the low 

hit rate of the L1 and L2 caches (respectively 69% and 57% 

in this study), the instruction completion usually can take hundreds of 

ing which the warp remains in Waiting-Lookup table. Other warps which 

execute the same instruction can merge with this warp (under the conditions used for 

Lookup table). Waiting-Lookup table effectively improves lane activity where 

cute memory instructions. The warps in Waiting

Level eventually, when the pending memory access completes.

convergence Barriers 

convergence table is a barrier synchronizing a group of threads 

e RPC. The barrier maintains a vector mask tracking the threads that have 

reached the RPC. Once all threads reach the RPC, the reincarnated warp is send to 

Level scheduler, turning in to an active warp. 

Merging diverged threads can result in constructing new warps from arbitrary threads. Therefore, 

implicit synchronization is not guaranteed for all threads. 

 

store diverged threads waiting to be merged. Warps in Lookup tables depart to 

) reserves a barrier to 

convergence point. Each entry of 

convergence program counter (RPC), 

identifiers of the threads that must be synchronized at the RPC, and the vector mask 

indicating which threads have reached the barrier. Below we provide further 

tables. Then we discuss table-to-

) maintains the recently diverged warps, which are 
possible1. Merging 

: 1) the merging 

unter as the diverged thread, and 2) the 

 

Lookup table longer. 

pipeline from some 

In order to maintain merging opportunities 

) and take advantage of 

Level depart to Waiting-

Lookup table upon decoding a global memory access instruction. Due to the low 

% for workloads 

the instruction completion usually can take hundreds of 

Lookup table. Other warps which 

execute the same instruction can merge with this warp (under the conditions used for 

Lookup table effectively improves lane activity where 

cute memory instructions. The warps in Waiting-Lookup table 

Level eventually, when the pending memory access completes. 

convergence table is a barrier synchronizing a group of threads 

e RPC. The barrier maintains a vector mask tracking the threads that have 

reached the RPC. Once all threads reach the RPC, the reincarnated warp is send to 

Merging diverged threads can result in constructing new warps from arbitrary threads. Therefore, 



Figure 8. The architecture of an 

for 2-wide SIMD. We assume 

upon committing diverged warp

 

HARP detects threads reaching the barrier upon commit. Threads belonging to 

the committing warp search their common next PC in Re

If no match is found, the next PC is not the re

threads (the committing warp

warp can proceed further). Otherwise, threads have reached the re

barrier. The reaching threads are marked in the matching barriers and the 

committing warp is inval

under SBR). 

Figure 8 presents Re

according to the least-

thread’s lifetime and are therefore

upon committing the diverged warp

each lane of the warp. 

associated lane is modified. If the lookup reserves a new entry, both TID and RPC 

are modified. In case there is no matching/free entry, the thread fails to reserve the 

barrier at RPC and will miss the re

operations upon committing 

barriers stalling the committing threads at PC. 

thread is marked at the ‘vector mask’ 

committing warp. This thread waits 

barrier and are similarly 

for one thread. Performing the operation for multiple 

most of the logic presented here

In the architecture present

need to access different sets of the table. Accordingly, the table should have 

ports as many as the warp size

The architecture of an 8-entry two-way set-associative Re-convergence Barriers table 

We assume 1024 concurrent threads so each TID is 9-bit. (a) Operations 

on committing diverged warp. (b) Operations upon committing non-diverged warp.

detects threads reaching the barrier upon commit. Threads belonging to 

the committing warp search their common next PC in Re-convergence Barriers table. 

If no match is found, the next PC is not the re-convergence point for the committing 

itting warp’s status is updated as ready in Second

proceed further). Otherwise, threads have reached the re

barrier. The reaching threads are marked in the matching barriers and the 

committing warp is invalidated (similar to the pop operation in re-convergence stack 

Re-convergence Barriers. Each thread maps to a set 

-significant bits of TID (thread lanes do not change during 

d are therefore excluded from TID). 8 (a) shows the operation

upon committing the diverged warp. In this case, a barrier is reserved on RPC for 

each lane of the warp. If the lookup finds a valid matching entry, the TID of 

dified. If the lookup reserves a new entry, both TID and RPC 

are modified. In case there is no matching/free entry, the thread fails to reserve the 

barrier at RPC and will miss the re-convergence chance at RPC.

upon committing the non-diverged warp. The table is 

barriers stalling the committing threads at PC. If the lookup finds

thread is marked at the ‘vector mask’ as reached and is excluded from 

This thread waits on the barrier until other threads 

similarly marked at the vector mask. The figure presents 

Performing the operation for multiple threads will require replicating

the logic presented here. 

In the architecture presented in Figure 8, threads of the committing warp may 

need to access different sets of the table. Accordingly, the table should have 

warp size. An alternative to this multi-port single

 

 

convergence Barriers table 

bit. (a) Operations 

diverged warp. 

detects threads reaching the barrier upon commit. Threads belonging to 

convergence Barriers table. 

convergence point for the committing 

ready in Second-Level so the 

proceed further). Otherwise, threads have reached the re-convergence 

barrier. The reaching threads are marked in the matching barriers and the 

convergence stack 

Each thread maps to a set in the table 

thread lanes do not change during 

shows the operations 

. In this case, a barrier is reserved on RPC for 

entry, the TID of 

dified. If the lookup reserves a new entry, both TID and RPC 

are modified. In case there is no matching/free entry, the thread fails to reserve the 

convergence chance at RPC. 8 (b) shows 

is searched for 

s a match, the 

excluded from the 

other threads reach the 

he figure presents operations 

threads will require replicating 

threads of the committing warp may 

need to access different sets of the table. Accordingly, the table should have access 

port single-bank design, 



Figure 9. Under the same 

two-way set-associative Re

committing diverged warp. (b) Operations upon committing non

 
is implementing the table using 

this multi-bank design. 

thread accesses a dedicated bank, 

associated with one lane of the warp

warp lane. In Section 7.3.2

overhead. 

4.2.3 Transition policies

Warps depart from Lookup tables to Second

convergence Barriers table to Second

Level to First-Level (second

performed just-in-time; early departure reduces the merging effectiveness and late 

departure reduces active wa

We have evaluated complicated policies to achieve the right timing (e.g. keeping the 

warp in Lookup table so long there is a possibility to have a diverging warp at the 

same diverging path). Howeve

policy is to transit once the Second

We use the FIFO policy to select the transiting warp. For barrier

no benefit to postpone the tran

possible after all threads reach their barrier. For second

among the ready warps.

4.2.4 Design space 

Under HARP, the size of warps and barriers are equal to SIMD width. The size

tables can vary, resulting in different costs and benefits. Our study shows that 

Lookup tables and Re

performance and implementation cost

Lookup tables are fully

tables’ sizes beyond 16-entry does not come with performance returns. We assume an 

8-entry Ready-Lookup, 

finds Lookup table full, the warp is bypassed to Second

of merging. Our evaluation shows that reducing Ready

Under the same assumption as Figure 8, the multi-bank implementation of an 

associative Re-convergence Barriers table for 2-wide SIMD. (a) Operations upon 

committing diverged warp. (b) Operations upon committing non-diverged warp. 

table using multiple single-port banks. In Figure 

design. Here the number of banks matches warp size

thread accesses a dedicated bank, access conflicts are avoided. 

associated with one lane of the warp and has a single port serving the 

7.3.2 we report the performance impact of the associated 

Transition policies 

Warps depart from Lookup tables to Second-Level (lookup-to-second), from Re

Barriers table to Second-Level (barrier-to-second), and from Second

Level (second-to-first). Lookup-to-second transition should be 

time; early departure reduces the merging effectiveness and late 

duces active warps (increasing the likelihood of an idle pipeline 

We have evaluated complicated policies to achieve the right timing (e.g. keeping the 

warp in Lookup table so long there is a possibility to have a diverging warp at the 

same diverging path). However, we found that the best lookup-to-second transition 

policy is to transit once the Second-Level has a few ready warps (here less than 

We use the FIFO policy to select the transiting warp. For barrier-to-second, there is 

no benefit to postpone the transition. Therefore, we perform the transition

after all threads reach their barrier. For second-to-first, we use FIFO policy 

among the ready warps. 

, the size of warps and barriers are equal to SIMD width. The size

tables can vary, resulting in different costs and benefits. Our study shows that 

Lookup tables and Re-convergence Barriers table have the highest impact on 

performance and implementation cost. Therefore below we focus on these two tables. 

es are fully-associative and our evaluation shows that increasing

entry does not come with performance returns. We assume an 

, and an 8-entry Waiting-Lookup table. If the diverging warp 

l, the warp is bypassed to Second-Level and misses the chance 

of merging. Our evaluation shows that reducing Ready-Lookup size from 

 

bank implementation of an 8-entry 

wide SIMD. (a) Operations upon 

 

Figure 9 we present 

warp size. Since each 

avoided. Each bank is 

the corresponding 

associated timing 

second), from Re-

second), and from Second-

second transition should be 

time; early departure reduces the merging effectiveness and late 

pipeline depth). 

We have evaluated complicated policies to achieve the right timing (e.g. keeping the 

warp in Lookup table so long there is a possibility to have a diverging warp at the 

second transition 

here less than 2). 

second, there is 

sition. Therefore, we perform the transition as soon as 

t, we use FIFO policy 

, the size of warps and barriers are equal to SIMD width. The sizes of 

tables can vary, resulting in different costs and benefits. Our study shows that 

convergence Barriers table have the highest impact on 

Therefore below we focus on these two tables.  

associative and our evaluation shows that increasing the 

entry does not come with performance returns. We assume an 

Lookup table. If the diverging warp 

Level and misses the chance 

Lookup size from 8 to 4 



entries can degrade performance by 2%. Similarly, reducing Waiting-Lookup size 

from 8 to 4 entries can degrade performance by 6%. 

Re-convergence Barriers table is a set-associative table. Each set is assigned to a 

range of threads (as discussed in Section 4.2.2, based on TID’s least-significant bits). 

This design reduces the cost associated with search operations significantly while 

providing enough barriers compared to a fully-associative table. If the diverging warp 

finds the set full, no barrier is created and the diverged threads bypass the 

corresponding re-convergence point, possibly resulting in lane activity loss. Larger 

Re-convergence Barriers tables prevent this serialization. Our evaluation shows that 

employing a fully-associative Re-convergence Barriers table with more than 154 

entries does not enhance performance. We assume a 128-entry 16-way set-associative 

table.  

 

4.3 Operation Example 

Figure 10 depicts an example demonstrating HARP operations. 10(a) represents a 

typical GPU kernel code exhibiting branch divergence. Code block A terminates with 

a diverging branch and code block D is the corresponding re-convergence point. Code 

block B and C are diverging paths of A, each executing a global memory instruction. 

10(b) shows the diverging paths of 8 concurrent threads in the control-flow graph 

corresponding to the 10(a) kernel. 

10(c) to 10(l) present how HARP operates during execution of the given code. To 

simplify the descriptions, we assume a unified scheduler, where First-Level and 

Second-Level warps merge in the same table (Scheduler). Two concurrent ready 

warps are ready to execute the last instruction of code block A (q). The scheduler 

selects the next warp (W0) to issue and sends it to the pipeline. The next instruction 

of W0, which is a conditional branch at the end of A, is fetched in the next stage (w). 

Similarly, in the subsequent cycle, the scheduler selects W1 as the next warp (e). 

Branch divergence occurs upon committing W0 (r). HARP performs three operations 

upon committing the diverged warp (W0): I) terminating W0 by invalidating W0’s 

entry in Scheduler, II) reserving a barrier to re-converge the threads of W0 later at D 

(t), and III) regrouping the diverged threads of W0 into new warps. For the barrier, 

the vector mask is set to all zero indicating none of the threads have reached the 

barrier. For regrouping, HARP searches Lookup table to merge the diverged threads 

with existing warps.  Since the Lookup table is empty there are no merging 

opportunities and therefore two new warps are formed using the diverged threads 

(y). Warps at the Lookup table eventually move to the scheduler table one by one 

every time the scheduler starts to run out of warps. In subsequent cycles, one of the 

warps in the Lookup table departs to the scheduler (1)). The departed warp is named 

W2 in the scheduler (1)). Similar to W0, W1 diverges upon commit. HARP performs 

three operations upon committing W1 (u): I) invalidating W1, II) reserving a barrier 

to re-converge D (i), and III) regrouping the diverged threads of W1. For the barrier, 

the vector mask is set to all zero. For regrouping, T4, T5, and T6 are regrouped into a 

new warp (o) and T7 is merged into the empty lanes of the existing warp at code 

block C (o). In the following cycle, the scheduler selects the only available warp (W2) 

for issue (1@). W3, which has been residing at Lookup table, departs to the scheduler 

according to FIFO policy (1!). 

The remainder of the example demonstrates how re-convergence barriers 

synchronize threads. Upon committing W2 (1%), Re-convergence Barriers table 

indicates T1 and T3 should wait for T0 and T2 on the barrier at D. Accordingly, 

HARP invalidates W2 and marks T1 and T3 as ‘1’ in the vector mask of the barrier 

showing that T1 and T3 have reached D (1^). The scheduler selects W3 as the next 

warp to issue (1$). The only warp remaining at Lookup table moves to the scheduler 



(labeled as W4) (1#). 

indicates that T4, T5, and T

HARP invalidates W3 and marks T

barrier showing that they have reached 

fetching W4 (1&) and committing W

5. RELATED WORKS 

Table 2 summarizes how previously suggested studies impact

width utilization. Previous studies have proposed three classes of solutions for 

Figure 10. Operation example of HARP.  

). Upon committing W3 (1*), Re-convergence 

and T6 should wait for T7 on the barrier at D. Accordingly, 

 and marks T4, T5, and T6 as ‘1’ in the vector mask of the 

barrier showing that they have reached D (1().A similar process continues with 

and committing W4 at instruction D (2)).  

how previously suggested studies impact pipeline depth and 

Previous studies have proposed three classes of solutions for 

 

convergence Barriers table 

rier at D. Accordingly, 

ector mask of the 

similar process continues with 

pipeline depth and 

Previous studies have proposed three classes of solutions for 



Table 2. A summary of previous studies’ impact on pipeline depth/width utilization: ‘+’ indicates addressing 
the associated parameter while ‘-’ shows a possible negative impact on the issue compared to SBR. 

 Pipeline Depth Utilization 

(Stalled threads) 

Pipeline Width 

Utilization 

(lane activity) re-convergence 

waiting 
inactive 

DWF +no re-convergence +no serialization 
+dynamic regrouping 

-no re-convergence 

DWS +Heuristic +Heuristic -over subdivision 

TBC -Large warps -Large warps +Compaction 

LWM -Large warps -Large warps +Compaction 

CAPRI 

+Compaction-

adequacy prediction 
-Large warps 

-Large warps +Compaction 

SBI+SWI 
+Co-issuing two 

diverging paths 

+Co-issuing two 

diverging paths 

+Co-issuing two 

diverging paths 

DPE 
+Activating two 

diverging paths 

+Activating two 

diverging paths  
NO_IMPACT 

HARP +Small warps +no serialization +dynamic regrouping 

 

improving TLP (pipeline depth utilization): 1) relaxing all re-convergence points 

[Fung et al. 2007], 2) interleaving the execution of diverging paths to prevent 

serialization [Meng et al. 2010; Rhu and Erez 2013], and 3) selectively passing the 

threads waiting at re-convergence points [Meng et al. 2010; Rhu and Erez 2012]. In 

addition, there are two classes of solutions addressing lane activity (pipeline width 

utilization): 1) re-converging the threads belonging to the same warp earlier than the 

immediate post-dominator [Diamos et al. 2011; Fung and Aamodt 2011], or 2) using 

threads from other warps to replace the inactive lanes, forming new warps either 

through compaction [Fung and Aamodt 2011; Narasiman et al. 2011; Rhu and Erez 

2012] or dynamic regrouping [Fung et al. 2007]. Below we briefly review important 

studies belonging to these classes.  

Fung et al. [2007] proposed Dynamic Warp Formation (DWF) to address SM 

underutilization upon branch divergence. DWF targets lane activity using dynamic 

regrouping to keep the diverged threads of different warps in the same warp. Meng 

et al. [2010] proposed Dynamic Warp Subdivision (DWS) to improve memory level 

parallelism (MLP) and latency hiding without running more concurrent threads per 

SM. DWS attacks diverging path serialization and uses the inactive diverged threads 

to hide the latency of instructions issued from the active threads [Meng et al. 2010]. 

DWS proposes three heuristics (referred to as subdivision schemes) to achieve this. 

Thread Block Compaction (TBC) [Fung and Aamodt 2011] uses a stack per thread-

block (instead of per warp). Lane activity improves as TBC compacts active threads 

at the top of the stack into multiple independent warps and synchronizes these warps 

at RPC (upon popping the top of re-convergence stack). Narasiman et al. [2011] 

proposed Large-Warp Microarchitecture (LWM) to address lane activity. LWM 

statically groups threads in large warps and executes warps in multiple cycles. As a 

negative consequence, some active threads diminish and some cycles are wasted in 

diverging paths. In order to prevent this, LWM compacts active threads at the top of 

the stack into warps as wide as SIMD width, and issues them one per cycle. Diamos 

et al. [2011] proposed Thread Frontier to re-converge at a re-convergence point 

earlier than the immediate post-dominator. This method is based on the fact that the 

threads of the same warp may execute the same diverging path multiple times in an 

unstructured control flow [Wu et al. 2012]. Rhu and Erez [2012] introduced CAPRI 



on top of TBC to prevent unnecessary synchronizations at the end of basic blocks. 

CAPRI relies on a compaction-adequacy predictor to identify beneficial 

synchronizations and bypass others. CAPRI attacks lane activity and re-convergence 

waiting. Brunie et al. [2012] target lane activity by introducing instruction 

interleaving mechanisms (referred to as SBI, SWI, and SBI+SWI) to issue secondary 

instructions into the inactive lanes of primary issued warp. The secondary 

instructions can be co-issued from i) another warp, and/or ii) other diverging paths of 

the same warp. Each SIMD lane is configured dynamically to execute one of the 

instructions according to the operation mask. Rhu and Erez [2012] introduced Dual-

Path Execution (DPE) model to interleave the execution of at most two parallel 

diverging paths per warp. DPE is implemented through simple modifications to the 

SBR re-convergence stack. 

HARP is different from above studies as it targets lane activity improvement 

(pipeline width utilization) and TLP improvement (pipeline depth utilization) at the 

same time. Attacking each of these issues alone can affect the other. For example, 

DWF eliminates re-convergence waiting to enhance TLP through inactive and 

waiting threads. However, DWF can face situations where warps never re-converge 

resulting in consequences such as starvation eddies [Fung and Aamodt 2011]. DWF 

performs best under computational-intensive applications suffering from branch 

divergence. DWS eliminates serialization and reduces re-convergence waiting by 

executing both diverging paths and adaptively issuing threads waiting at re-

convergence threads. DWS benefits from issuing the waiting threads if these threads 

end up in prefetching data for threads of the same warp. On the negative side, these 

threads may pass the re-convergence point at lower lane activity, compared to SBR. 

Compared to DWF, DWS provides better TLP enhancement as it exploits 

mechanisms to re-converge the diverged threads. TBC and LWM focus on lane 

activity without taking into account the impact on serialization and re-convergence 

waiting. Both solutions employ a large stack to maximize lane activity. This comes at 

the cost of exacerbated serialization and re-convergence waiting. The performance 

cost of this approach is little in the presence of multiple concurrent large warps. 

CAPRI significantly reduces the re-convergence waiting associated with TBC. 

However, and as reported by the authors, it suffers from higher re-convergence 

waiting compared to the SBR [Rhu and Erez 2012]. Moreover, CAPRI does not 

address diverging path serialization. SBI+SWI simultaneously merges and co-issues 

two narrow-occupied warps over SIMD. This method improves width utilization and 

eliminates diverging path serialization. The number of merging warps, however, is 

limited to two [Brunie et al. 2012]. DPE targets depth utilization and activates two 

parallel diverging paths. The mechanism effectively interleaves the execution of 

diverging paths to mitigate the stalled threads. DPE, however, limits the 

interleaving potential. Due to stack limitations, DPE can only interleave the 

diverging paths corresponding to the same branch. Accordingly, stalled threads 

under nested diverging paths cannot be interleaved. DPE does not impact the 

pipeline width utilization. 

HARP can be used on top of [Fung and Aamodt 2011] and [Diamos et al. 2011] to 

possibly achieve higher performance by re-converging the threads earlier than the 

immediate post-dominator. Limiting re-convergence to the immediate post-dominator 

(as currently done by HARP) increases the number of regrouping opportunities at the 

expense of a later re-convergence. HARP is different from [Fung et al. 2007] as we 

guarantee returning to pre-divergence SIMD by re-converging at the immediate post-

dominator. This eliminates undesirable consequences associated with [Fung et al. 

2007] such as starvation eddies scenarios.  

HARP is different from DWS [Meng et al. 2010] in two ways. First, HARP 

enhances lane activity by regrouping threads from different warps into the same 



Table 3. Baseline configurations for GPGPU-sim. LWM’s warp size is 
128. HARP’s warp size is 16 (equal to SIMD width). 

NoC 

#SMs : #Memory Ctrls 16 : 6 

#SM Sharing a Network Interface 4 

Clocking 

Core : Interconnect : DRAM 1150 : 650 : 1500 MHz 

Memory 

L2 Unified Cache 
per Memory Ctrls 

128 KB : 16-way : LRU : 64Byte blocks 

#Banks Per Memory Ctrls 8 

DRAM Scheduling Policy : Queue Size FCFS:32 

GDDR5 memory 
timing 

tRRD=5, tRCD=12, tRAS=28, tRP=12, 
tRC=35, tCL=10 

SM 

# warp schedulers 2 

#threads per warp scheduler 768 

#SIMD groups : SIMD width : Pipeline depth 2 : 16 : 8 

Maximum thread-blocks 16 

Warp size 32 

Register file : Shared memory 128KB : 32KB 

L1 Data $ 48KB : 12-way : LRU : 64Byte blocks 

L1 Texture $ 8KB : 2-way : LRU : 64Byte blocks 

L1 Constant $ 8KB : 2-way : LRU : 64Byte blocks 
 

 

warp. Second, HARP reduces re-convergence waiting using small warps and with a 

workload independent approach. Using small warps synchronizes fewer threads 

reducing the re-convergence waiting. In addition, independent schedulable warps 

hide the latency of each other and can potentially act as a pre-fetcher for other warps. 

Whether the decisions made by the subdivision schemes improve performance 

depends on application prefetching frequency and is workload dependent.  

Our work is different from TBC [Fung and Aamodt 2011] and LWM [Narasiman 

et al. 2011] in three ways. First, HARP eliminates diverging path serialization. Large 

re-convergence stack, as used by TBC and LWM, can exacerbate serialization since it 

may increase the number of inactive threads. HARP does not come with this 

drawback. Second, HARP improves re-convergence waiting using small warps. 

Larger stack synchronizes a larger number of threads at the re-convergence point, 

which can increase re-convergence waiting. HARP does not suffer from this increase 

as it limits synchronization to a smaller group of threads. Third, by focusing on short-

life warps within a basic block, HARP does not require dealing with the complexities 

associated with SBR approaches maintaining a large number of diverged threads. 

The key difference between HARP and CAPRI is that HARP does not inactivate 

threads due to divergence. Intuitively we expect CAPRI to have higher lane activity 

compared to HARP (similar to LWM). CAPRI takes a different approach to address 

re-convergence waiting and relies on predictor accuracy to reduce re-convergence 

waiting. As reported by the authors in [Rhu and Erez 2012], it is hard to predict 

compaction-adequacy accurately under complex control flow graphs leading to the 

performance near to TBC (e.g. MU). 

HARP differs from SBI+SWI [Brunie et al. 2012] in several ways. First, SBI+SWI 

selects and co-issues diverged threads every cycle. HARP, however, regroups 

diverged threads into new warps and maintains the new warps until they diverge 

again or reach the re-convergence point. Second, while SBI+SWI executes a 

particular static instruction to ensure re-convergence, HARP synchronizes the 

diverged threads using dynamic barriers.  Using static instruction to coordinate 



Table 4. HARP’s configuration details under GPGPU-sim.  

SM 

#warp schedulers 2 

#threads per warp scheduler 768 

#entry in Second-level table per warp scheduler 512 

#entry in Ready-Lookup table per warp scheduler 8 

#entry in Waiting-Lookup table per warp scheduler 8 

#entry in Re-convergence Barriers table per warp scheduler 128 

#way in Re-convergence Barriers table per warp scheduler 16 

#SIMD groups : SIMD width : Pipeline depth 2 : 16 : 8 

Maximum thread-blocks 16 

Warp size 16 

Register file : Shared memory 128KB : 32KB 

L1 Data $ 48KB : 12-way : LRU : 64Byte blocks 

L1 Texture $ 8KB : 2-way : LRU : 64Byte blocks 

L1 Constant $ 8KB : 2-way : LRU : 64Byte blocks 
 

 
warp-splits limits the scope of the solution to a single warp. In HARP, however, using 

dynamic barriers relaxes this restriction allowing multiple warps to share barriers. 

Finally, HARP allows higher number of diverged warps to be merged into one. Under 

SBI+SWI, the number of warps (or diverging paths) that can be merged is equal to 

the number of warp schedulers per SM. HARP does not limit this to the number of 

available warp schedulers. Instead, HARP temporarily stalls the diverged threads in 

a table to merge multiple narrowly occupied, recently diverged warps.  It should be 

noted that HARP can be employed on top of the dual-instruction SIMD design 

suggested by Brunie et al. [2012] to co-issue two warps simultaneously. 

There are two main differences between HARP and DPE. First, HARP targets 

width underutilization and regroups the diverged threads into new warps to improve 

lane activity. Second, HARP activates all diverging paths to unchain inactive threads 

and to minimize the stalled TLP, enhancing depth utilization. 

6. METHODOLOGY 

6.1 Simulator Infrastructure 

We modified GPGPU-sim [Bakhoda et al. 2009] (version 2.1.1b) to evaluate HARP. 

We simulated the system shown in Table 3 to model the baseline microarchitecture 

described in Section 2. We modified GPGPU-sim to model a baseline GPU similar to 

NVIDIA Fermi [Wittenbrink et al. 2011]. We model two independent warp schedulers 

per SM issuing instructions on two SIMD groups backend. We have configured the 

GPGPU-sim to model GDDR5 timing of hynix H5GQ1H24AFR [hynix 2009] (as 

suggested by GPGPU-sim v3). We report performance in terms of throughput or IPC 

(instruction per clock). To estimate HARP’s area overhead we use CACTI 6.5 

[Muralimanohart et al. 2007]. 

We compare HARP to SBR, DWF [Fung et al. 2007], and LWM [Narasiman et al. 

2011]. We configured DWF with 32 threads per warp, 256 entries per LUT and 

Majority issue heuristic [Fung et al. 2007]. We assume 128 threads per warp for 

LWM. 

We assumed 512-entry Second-Level table, an 8-entry Ready-Lookup table, an 8-

entry Waiting-Lookup table, and a 16-way 128-entry Re-convergence Barriers table 

for the baseline configuration in HARP. Table 4 summarizes HARP’s configuration 

details. 

 



Table 5. Benchmarks Characteristics. Concurrent threads per SM is twice the number of concurrent 
threads/scheduler. 

T
y
p
e Benchmark 

name 
Abbrev. 

Grid 

Size 

Block 

Size 

Total 

dynamic 

instructions 

Concurrent 

thread-

block/SM 

Concurrent 

threads/ 

scheduler 

T
y
p
e 
A
 

MUMmer-
GPU++ 

MP (1) (256) 0.3M 1 256 

MUMmer-
GPU 

MU (1) (100) 0.2M 1 100 

N-Queen NQU (256) (96) 1.2M 1 96 

Needleman-
Wunsch 

NW 

2x(1) 
… 

2x(127) 
(128) 

255x(16) 207M 3/4 48/64 

Particle Filter PF 9x(8) 9x(128) 42M 1 128 

T
y
p
e 
B
 

BFS Graph BFS 16x(8) 16x(512) 1.4M 1 512 

Back 
Propagation 

BKP 2x(1,64) 2x(16,16) 2.9M 4 512 

Hotspot HSPT (43,43) (16,16) 76M 2 512 

Laplace 3D LPS (4,25) (32,4) 81M 3 384 

Ray Tracing RAY (16,32) (16,8) 65M 3 384 

T
y
p
e 
C
 

Coulomb 
Potential 

CP (8,32) (16,8) 113M 8 768 

Fast Walsh 
Transform 

FWAL 
6x(32) 
3x(16) 

1x(128) 

6x(256) 
3x(512) 
1x(512) 

12M 1 256/512 

Matrix 
Multiply 

MTM (5,8) (16,16) 2.4M 3 256 

 

6.2 Benchmark Analysis  

We use benchmarks from Rodinia [Che et al. 2009], CUDA SDK 2.3 [NVIDIA Corp. 

2008], Parboil [Stratton et al. 2012], and the benchmarks distributed with GPGPU-

sim [Bakhoda et al 2009]. We include MUMmerGPU++ [Gharaibeh and Ripeanu 

2010] third-party sequence alignment program. Our benchmark set includes 18 

benchmarks. Table 5 shows the benchmarks and their characteristics. In this table 

Grid Size and Block Size columns represent a list of grid sizes and thread-block sizes 

that are launched by the benchmark. Generally, each size in the list is a represented 

by Kx (X,Y,Z) where X, Y, and Z denote the dimension sizes of grid/thread-block and 

K denotes the number of kernels launched by the benchmark. The table omits K, Y, 

and Z when their value is equal to one. The last two columns report the occupancy of 

kernels, sometimes separated by / (e.g. two different kernel occupancies in NW). We 

have modified PF to generate static random numbers across different runs. In the 

remainder of this section, we provide deeper analysis by investigating benchmarks in 

more detail.  

We classify the benchmarks used in this study to three types. Benchmarks like 

BKP, BFS, HSPT, LPS, MU, MP, NQU, NW, PF, and RAY exhibit low lane activity 

and high amount of stalled threads. These benchmarks can potentially compensate 1) 

their lane activity loss by bringing threads from other warps into inactive lanes, and 

2) their pipeline depth underutilization by using stalled threads. Lane activity is the 

common critical performance impacting issue in these workloads. On the other hand, 

existence of abundant parallel threads can mitigate the performance impact of 

activating the stalled threads. We categorize these benchmarks into Type A and Type 

B. Type A benchmarks have limited thread-level parallelism, benefiting from 



 

 
Figure 11. Performance for LWM, DWF, HARP, and SBR. The numbers are normalized to SBR. 

 

LWM DWF HARP SBR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

MP MU NQU NW PF

N
o
rm
a
li
z
e
d
 I
P
C

Type A

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BFS BKP HSPT LPS RAY

Type B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

CP FWAL MTM

Type C

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

A B C all

Harmonic 

Mean

activating the stalled threads (e.g. MP, MU, NQU, PF, and NW). Type B benchmarks 

have abundant thread-level parallelism, and are less likely to benefit from activating 

the stalled threads (e.g. BFS, BKP, LPS, HSPT, and RAY). 

The remaining benchmarks, CP, FWAL, and MTM do not have stalled threads 

(due to inactivation or waiting at re-convergence). Consequently, these benchmarks 

lack the opportunity to improve pipeline depth utilization using stalled threads. 

Moreover, these benchmarks show full lane activity as there is no branch divergence. 

Therefore, there is no room to improve pipeline width utilization. In the light of these 

observations it is important to understand that we do not expect these benchmarks 

(and those with similar characteristics) to benefit from HARP. Nonetheless we 

include these benchmarks to represent applications losing performance mainly due to 

memory stalls. We refer to this group of applications as Type C.   

 

7. EXPERIMENTAL RESULTS 

In this section we present experimental results. In Section 7.1 we present 

performance, pipeline width/depth utilization, and thread-level parallelism analysis. 

In Section 7.2 we report sensitivity analysis. In Section 7.3 we report design space 

exploration for HARP. In Section 7.4 we discuss HARP’s limitations.  

7.1 In-depth Analysis 

Performance. Figure 11 reports performance. We classify benchmarks according to 

Section 6.2. On average, HARP outperforms SBR, DWF, and LWM by 10% (max: 

60%), 7% (max: 29%), and 10% (max: 88%), respectively.  

HARP, expectedly, performs close to the baseline for Type C applications as this 

group of benchmarks do not face any of the challenges discussed in Section 3. For 

Type A and B, HARP improves performance by improving lane activity and TLP. 

This is achieved since HARP does not target TLP improvement (similar to DWF) or 

lane activity (similar to LWM) aggressively and in isolation. HARP improves both 

TLP and lane activity simultaneously to keep pipeline depth (TLP) and width (lane 

activity) utilized. For example, HARP performs the best for MP and MU while a 

previous solution, LWM, provides the best lane activity. This shows that maximizing 

lane activity is insufficient to achieve the best absolute performance. 

Similarly, eliminating diverging path serialization and re-convergence waiting 

time without improving lane activity is not always successful. This is evidenced by 

RAY’s performance loss under DWF. We conclude that our balanced solution can be 

more effective when both TLP and lane activity are critical. 

LWM outperforms HARP for Type B applications having enough parallel threads 

to hide synchronization latency. The high TLP availability in this group of 

applications reduces the impact of stalled threads on performance. Accordingly, LWM 



appears effective for Type B applications not suffering from re-convergence waiting 

and serialization (e.g., BFS and HSPT). 

In the absence of enough parallel threads (Type A applications), HARP uses 

existing inactive/waiting parallelism to improve TLP and to keep the pipeline depth 

utilized. LWM, however, suffers from TLP reduction, which can out-weight its lane 

activity improvement (e.g., in MP, MU, and PF). Lack of enough parallelism is 

common for workloads employing large shared memory per thread-block or high 

number of register per threads [Volkov and Demmel 2008], which prevents running a 

high number of thread-blocks per SM.  

In the remainder of this section, we analyze pipeline depth utilization, pipeline 

width utilization, and thread-level parallelism to provide better understanding 

regarding how HARP impacts performance. 

Pipeline depth utilization. Figure 12 reports depths utilization for HARP and 

previous works. HARP enhances depth utilization in low-TLP Type A benchmarks by 

using their high number of stalled threads. For example, under MU and MP where 

the stalled threads are significant, depth utilization return is significant too. In NW, 

stalled threads are insignificant. Therefore, there is little room for depth utilization 

improvement under HARP. Type B benchmarks, however, already have high TLP 

along side high number of stalled threads. In these benchmarks, the depth utilization 

enhancement return achieved by HARP is not significant since the available TLP 

already provides high depth utilization. Finally, Type C benchmarks exhibit no 

stalled threads, leaving little depth utilization enhancement opportunity for HARP.  

Pipeline width utilization. Figure 13 reports lane activity for different 

solutions. Type C applications show no variation in lane activity under LWM, DWF, 

and HARP performing close to SBR. Branch divergence does not happen in Type C 

applications leaving no room for improving SBR’s lane activity. Type B applications, 

as reported earlier in Figure 4, exhibit a small gap between the width utilization of 

SBR and Oracle (except for BFS). According to Figure 13, even LWM, which merely 

focuses on width utilization enhancement, cannot improve width utilization 

significantly in Type B benchmarks. Type A benchmarks, however, show lane activity 

improvements under DWF, LWM, and HARP. DWF impacts lane activity at the 

expense of relaxing all re-convergences. For example, in NW, discarding re-

convergence worsens lane activity under DWF as combinable-warps execute the same 

code block multiple times (notice DWF’s depth utilization gain over other methods in 

Figure 12). HARP, on the other hand, employs dynamic re-convergence barriers on 

top of DWF to prevent such undesirable consequences. Therefore, HARP improves 

lane activity in MU, MP, NQU, BFS compared to SBR. HARP, however, reduces lane 

activity under LPS and RAY. For these benchmarks, Re-convergence Barriers table 

space limitation causes a few re-convergence barriers reservation misses. 

Subsequently, a few warps miss re-converging opportunities and continue to execute 

the re-convergence code block in multiple narrow-occupied warps. Larger Re-

convergence Barrier table can mitigate this impact. Among the studied mechanisms, 

LWM achieves higher average lane activity compared to SBR, DWF, and HARP for 

Type A and B applications. LWM keeps many threads (here 128) at the same pace 

providing greater opportunity for regrouping and reducing inactive lanes. On the 

other hand, HARP and DWF do not produce new regrouping opportunities. Achieving 

maximum lane activity alone does not necessarily translate to best performance when 

TLP is not high enough to fully utilize the pipeline depth. This is due to the fact that 

lane activity gains come with thread-level parallelism reduction and pipeline depth 

underutilization in the absence of enough TLP. 

Thread-Level Parallelism. Figure 14 reports the percentage of concurrent 

ready threads, which are stalled due to 1) synchronization at the re-convergence 

point, or 2) serialization of diverging paths in the re-convergence stack. As reported, 



 

Figure 12. Pipeline depth utilization for LWM, DWF, HARP, and baseline (SBR). 

 
Figure 13. Pipeline width utilization for LWM, DWF, HARP, and baseline (SBR). 

 
Figure 14. Share of threads waiting at the re-convergence barrier or inactivated at a diverging 

path during idle cycles of pipeline front-end. DWF eliminates re-convergence and serialization 

and therefore is not included. Numbers are normalized to SBR. 

 

0%

20%

40%

60%

80%

100%

MP MU NQU NW PF BFS BKP HSPT LPS RAY CP FWAL MTM

Type A Type B Type C

LWM DWF HARP SBR

0%

20%

40%

60%

80%

100%

MP MU NQU NW PF BFS BKP HSPT LPS RAY CP FWAL MTM

Type A Type B Type C

LWM DWF HARP SBR

0%

10%

20%

30%

40%

50%

60%

70%

L
W
M

H
A
R
P

S
B
R

L
W
M

H
A
R
P

S
B
R

L
W
M

H
A
R
P

S
B
R

L
W
M

H
A
R
P

S
B
R

L
W
M

H
A
R
P

S
B
R

L
W
M

H
A
R
P

S
B
R

L
W
M

H
A
R
P

S
B
R

L
W
M

H
A
R
P

S
B
R

L
W
M

H
A
R
P

S
B
R

L
W
M

H
A
R
P

S
B
R

MP MU NQU NW PF BFS BKP HSPT LPS RAY

Type A Type B

C
o
n
tr
ib
u
ti
o
n
 o
f 
S
ta
lle
d
 T
L
P

Waiting at re-convergence barrier inactived at diverging paths

threads are stalled more frequently due to re-convergence synchronization than 

diverging path serialization. The share of stalled threads is significant in Type A and 

B applications. Type C applications are excluded since they exhibit no branch 

divergence (and zero stalled threads). LWM keeps many threads at the same pace 

increasing the number of stalled threads compared to SBR. HARP improves thread-

level parallelism by reducing the number of stalled threads in two ways: 1) small 



warps (as wide as SIMD width) are constructed to mitigate re-convergence waiting, 

and 2) diverged threads are grouped into new independent warps to eliminate 

serialization. TLP improvements translate to significant performance improvement if 

current active threads fail to utilize the entire pipeline depth (e.g. Type A 

applications).  

7.2 Sensitivity Analysis 

In this section we evaluate the sensitivity of our findings under different 

microarchitectural factors. Each factor may come with different levels. In order to 

analyze the performance of the system comprehensively, we require designing 

experiments that consider the combinations of all the levels of all factors. This is a 

formidable task in terms of computational complexity, since design space of the 

experiments grows exponentially with the number of factors and the number of levels 

of each factor. Below we use the theory of factorial design [Jain 1991] to obtain the 

performance of the system effectively by obtaining the maximum information with 

the minimum number of experiments.  To this end, first we apply Plackett-Burman 

experimental design to find those factors that have higher impact on performance.  

Then, we re-evaluate our findings under variations in the reduced number of factors. 

7.2.1 Plackett-Burman design 

We apply two levels of Plackett-Burman (PB) design to find the most impacting 

factors. In the PB experiment there is one response, which depends on the variations 

of K independent factors. In the full design space, each factor can take two levels (low 

or high) leading to 2K different experiments. PB design uses the theory of 2k factorial 

design [Jain 1991] to find the most impacting factors through K+1 experiments. 

We assume the relative throughput of HARP to SBR as the response and assume 

the following microachitectural parameters as independent factors: 1) pipeline depth, 

2) L1 data cache size, 3) L1 Texture cache size, 4) L1 Constant cache size, 5) L2 

unified cache size, 6) SIMD width, and 7) multithreading depth.  For each factor, the 

low value represents the baseline configuration (Table 3) and the high value is 

assumed to be twice the low. For multithreading depth, we scale threads per SM, 

registers per SM, and shared memory per SM together. For L1 and L2 caches, we 

scale the number of sets in cache.  

Table 6 shows the 8-run PB design in which each row is one experiment where the 

factors take low (-1) or high (1) value. The effect of each factor is calculated by 

summing the multiplication of the factor and response in each run divided by 4: 

344���5678  9�
:567!;<�#=�������!;<�#8

>

?,+@A
 

According to the effects, factor 1 (pipeline depth) and factor 6 (SIMD width) have 

the highest impact on HARP’s speedup. In the remainder of this section, we focus on 

analyzing the sensitivity of HARP to these factors. 

7.2.2 In-depth analysis 

In order to study how system variations impact HARP, we focus on parameter 

changes with the highest impact: 1) deeper pipelines, and 2) wider SIMD widths. 

Figure 15 reports performance for different pipeline depths, and SIMD widths. 

Pipeline depth. Conventional SIMT accelerators from AMD (e.g., Cayman), 

employ an 8-cycle latency pipeline [AMD, Inc. 2011] (at 800 MHz core clock). Recent 

NVIDIA GPUs take a similar approach to reduce core clock frequency [NVIDIA Corp. 

2012b]. Previous NVIDIA accelerators, however, used higher frequencies (1.5 GHz). 

A previous work [Wong et al. 2010] showed that NVIDIA GT200 GPU pipeline 



Table 6. Plackett-Burman experimental design. Response is the relative performance of HARP to 
SBR. Factors are pipeline depth (1), L1$ data size (2), L1$ Texture size (3), L1 Constant size (4), L2 
cache size (5), SIMD width (6), and multithreading depth (7). 

 Factors Response 

 F1 F2 F3 F4 F5 F6 F7 speedup 

Run 1 1 -1 -1 1 -1 1 1 1.03 

Run 2 1 1 -1 -1 1 -1 1 1.09 

Run 3 1 1 1 -1 -1 1 -1 1.01 

Run 4 -1 1 1 1 -1 -1 1 1.09 

Run 5 1 -1 1 1 1 -1 -1 1.10 

Run 6 -1 1 -1 1 1 1 -1 0.96 

Run 7 -1 -1 1 -1 1 1 1 0.97 

Run 8 -1 -1 -1 -1 -1 -1 -1 1.10 

Effect 0.0283 -0.0100 -0.0020 0.0060 -0.0270 -0.1031 0.0007  

 

latency is 24 cycles for most instructions. Our baseline architecture models an 8-

stage pipeline for all types of operations. To evaluate our solutions under an 

alternative pipeline, we also investigate a 16-cycle pipeline and report performance 

in Figure 15(a). As presented in 15(a), deep pipelining lowers IPC as the number of 

under-process warps in the pipeline increases. Deep pipelining reduces the gap 

between HARP and SBR. The deeper the pipeline, the higher the number of warps 

that can reside in different pipeline stages. This leaves less number of warps in the 

Lookup table. Under deeper pipelines, HARP has limited choices to merge warps 

compared to accelerators using shorter pipelines. Therefore, increasing the pipeline 

depth to 16 reduces average performance gap between HARP and SBR by 1% and 8% 

for Type A and Type B applications, respectively.  

SIMD width. GPUs from different design spaces employ different SIMD widths. 

High-performance GPGPUs, for example, use large SIMD widths to reduce the 

associated data path overhead of many SIMD groups. While Tesla GPUs [Lindholm 

et al. 2008] employ one 8-wide SIMD group per SM, Fermi [Wittenbrink et al. 2011] 

has two 16-wide SIMD groups per SM and Kepler has 6 32-wide SIMD groups per 

SM [NVIDIA Corp. 2012b]. On the other hand, GPGPUs in smartphones and 

embedded devices employ narrower SIMDs. For example, PowerVR Series 5 OpenCL-

capable GPUs exploit 4-wide SIMD [Imagination Technologies s2012]. To 

accommodate both spaces, we evaluate HARP under 8-wide and 32-wide SIMD, while 

maintaining warp size for the baseline SBR. As presented in Figure 15(b), wider 

SIMD reduces the gap between SBR and HARP. 8-wide SIMD increases the gap 

between HARP and SBR by 9%. Under 32-wide SIMD, SBR outperforms HARP by 

4%. We have observed an increase in the re-convergence waiting under HARP for 

larger SIMD widths. This is due to the fact that many threads are locked together at 

common barriers. Particularly, under wider SIMD, HARP can construct wider 

barriers interlocking more threads. Consequently, the threads may experience longer 

waiting times at the re-convergence point. This waiting deprives the scheduler from 

ready threads, which can harm depth utilization. In fact, our study under wider 

SIMD shows that HARP can improve the width utilization significantly using larger 

barriers. However, the cost of this gain is depriving the pipeline from active/ready 

threads; degrading depth utilization. The depth utilization degradation can be 

compensated in Type B and C benchmarks with the vast available TLP. However, 

depth utilization degradation drops the performance significantly in the Type A 

benchmarks.   



 
(a)  

 
(b)  

Figure 15. Performance for SBR and HARP for different pipeline depths and SIMD width. 

Sensitivity to (a) pipeline depth, and (b) SIMD width. Numbers are normalized to SBR 8-stage 

pipeline and 16-wide SIMD. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

MP MU NQU NW2 PF

N
o
rm
a
li
z
e
d
 I
P
C

Type A

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BFS BKP HSPT LPS RAY

Type B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

CP FWAL MTM

Type C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A B C all

Harmonic 

Mean

SBR-8 HARP-8 SBR-16 HARP-16

0

0.5

1

1.5

2

2.5

MP MU NQU NW2 PF

N
o
rm
a
li
z
e
d
 I
P
C

Type A

0

0.5

1

1.5

2

BFS BKP HSPT LPS RAY

Type B

0

0.5

1

1.5

2

2.5

CP FWAL MTM

Type C

0

0.5

1

1.5

2

A B C all

Harmonic 

Mean

SBR-8 HARP-8 SBR-16 HARP-16 SBR-32 HARP-32

7.3 Design Space Exploration  

HARP requires employing four auxiliary tables: Second-Level, Ready-Lookup, 

Waiting-Lookup, and Re-convergence Barriers tables. The size and structure of these 

tables impact HARP. In this study, and after testing many alternatives to work along 

our 768-thread warp schedulers, we selected a 512-entry Second-Level table, an 8-

entry Ready-Lookup table, an 8-entry Waiting-Lookup table, and a 16-way 128-entry 

Re-convergence Barriers table. Our evaluation shows that a 512-entry Second-Level 

is large enough to avoid an overflow. Also, reducing the size of Ready-Lookup and 

Waiting-Lookup tables from eight to four comes with a performance cost of 2% and 

6%, respectively.  

While the above configuration works effectively for applications studied here, it is 

important to investigate potential overflow scenarios caused by applications 

requiring larger structures. We assume that upon an overflow in Second-Level, extra 

warps can be moved to the off-chip DRAM. Upon an overflow in Lookup tables, 

additional diverged warps are bypassed to the Second-Level. Upon an overflow in Re-

convergence Barriers table, diverged threads fail to reserve a barrier and 

subsequently miss the rejoining chance at the re-convergence point. Below we 

evaluate the sensitivity to the Re-convergence Barriers table size followed by HARP 

timing overhead considerations. 

7.3.1 Re-convergence Barriers Table Size 

We assumed a 16-way set-associative table for the Re-convergence Barriers table. As 

discussed earlier (Section 4.2.2), every 16 threads having consequent thread 

identifiers map to the same set in the table and share 16 available barriers. For 

example if the table has two sets, threads ranging from T0 to T15 find their barriers 

in set0. Similarly, T17 to T32 find their barriers in set1, T33 to T48 find their barrier 



 
Figure 16. Performance sensitivity to the number of entries in the Re-convergence Barriers table. 

0

0.2

0.4

0.6

0.8

1

1.2

BFS BKP CP FWAL HSPT LPS MP MTM MU NQU NW PF RAY

N
o
rm
a
li
z
e
d
 I
P
C

128 64 32 16 DWF

in set0, and so on. Threads mapping to the same set compete for reserving their 

barrier. Changes in associativity and/or the number of sets can increase or reduce 

contention. Figure 16 reports the performance gain achieved by increasing the table 

size from 16 (one set) to 32 (two sets), 64 (four sets), and 128 (eight sets) while set 

associativity is 16. The bar on the far right reports performance for DWF. For the 

workloads with very limited branch divergence (e.g. CP, FWAL, HSPT, and MTM) or 

a few concurrent threads per warp scheduler (e.g. MU, MP, NQU, NW, and PF), a 32-

entry (two sets) table is large enough to keep all dynamic re-convergence barriers. 

Reducing the table size below this number degrades performance due to an increase 

in the number of re-convergence misses. For some workloads (i.e., BFS, BKP, LPS, 

and RAY), tables with more than 32 entries are needed to prevent significant 

performance loss.  

7.3.2 Timing Overhead of Re-convergence Barriers Table 

The proposed microarchitecture for HARP performs searches and transitions. In this 

section we discuss the timing overhead of these operations and evaluate the 

performance impact under different timing scenarios. 

Searches include searching Lookup tables upon divergence and searching Re-

convergence Barriers table upon committing an instruction. These searches can be 

performed in parallel at the writeback stage. According to CACTI estimations, 

Lookup tables take 0.38 ns (0.18 ns to access the tag and 0.20 ns to access data) to 

access and therefore can be searched within a single cycle. We assume different 

performance/timing overhead alternatives for the Re-convergence Barriers table 

searches. According to CACTI estimations, it takes 0.63 ns (0.17 ns to access the tags 

and 0.46 ns to access the data) to access this table. Such accesses may result in 

violating pipeline’s timing restrictions. Under such a pessimistic scenario, Re-

convergence Barriers table can be pipelined. Accordingly, while we assume 1-cycle 

delay for accessing 8-set Re-convergence Barriers, we also measure the performance 

impact of pipelining the table access into 2 or 4 stages. Our study shows that the 

performance loss associated with this overhead is 3% and 8% for 2 and 4 stage table 

pipelines, respectively.  

Transitions include issuing warps from Lookup and Re-convergence Barriers to 

Second-Level, from Second-Level to First-Level, and from First-Level to Waiting-

Lookup. These transitions can be performed in a single cycle. HARP arbitrates 

lookup-to-second and barrier-to-second transitions and assigns higher priority to 

barrier-to-second to let the Lookup warps stay in the table for a longer time. 

 



Table 7. Hardware overhead of HARP microarchitecture per SM in 40 nm technology. The number of bits in 
the tag modules include program counter (32-bit) and thread identifiers of 16-thread (96-bit). 6-bit (10-4) is 
enough to identify the thread uniquely among 1024 threads because the lane of thread in the SIMD (16-
wide) does not change (4 least-significant bits of thread identifier can be ignored). 

  Module Spec. Area (mm2) 

  #banks #entries #sets #ways Tag bits Row Size Tag Data 

Re-conv. 

Barriers 

Lanes 16 128 8 16 (10-4) (10-4)+1 0.017 0.058 

RPC 1 128 8 16 1+32 32 0.010 0.010 

Second-Level 1 512 512 1  32+(16*(10-4))+2  0.024 

Lookup Ready 1 8 1 8 32+(16*(10-4)) 32+(16*(10-4)) 0.004 0.018 

Lookup Waiting 1 8 1 8 32+(16*(10-4)) 32+(16*(10-4)) 0.004 0.018 

Total for 1 warp scheduler 0.1622 

Total for 1 SM (two warp schedulers) 0.3244 

 

7.4 Limitations  

HARP benefits from improving both lane activity and TLP. HARP can be less 

effective once and if the lane activity becomes the dominating factor. For example, 

LWM is probably a better choice for accelerators and workloads where lane activity is 

the dominant source of performance loss (Type B). 

We investigated if HARP can benefit from aggregating concurrent threads at the 

same pace in order to improve regrouping efficiency (and lane activity) inside 

diverging paths. We examined several priority warp schedulers to keep threads at 

the same pace. Our study showed that the waiting time overhead outweighs the lane 

activity improvement.  

8. HARDWARE OVERHEAD 

In this section we estimate the area overhead associated with HARP. We used 

CACTI 6.5 [Muralimanohart et al. 2007] for the evaluation. Our baseline architecture 

models the architecture of NVIDIA Fermi GF100 [Wittenbrink et al. 2011]. Hence, 

we obtain the area in 40 nm technology and compare to publicly available NVIDIA 

GF100 information [Wikipedia 2013]. The overhead of HARP depends on several 

design parameters; namely Second-Level table and Re-convergence Barriers table. In 

this section we estimate the area overhead of a HARP configuration using 512-entry 

Second-Level, 128-entry 16-way associative Re-convergence Barriers, 8-entry fully-

associative Ready Lookup table, and 8-entry fully-associative Waiting Lookup table. 

Table 7 reports the estimated tables’ sizes. HARP imposes 0.16 mm2 area 

overhead per warp scheduler. The overhead for 16 SMs is 5.19 mm2. Our baseline 

architecture is similar to NVIDIA Fermi GF100 which is manufactured on 529 mm2 

chip [Wikipedia 2013]. We estimate that HARP imposes 1% (5.19 divided by 529) 

area overhead for a Fermi-like architecture. 

Under HARP, threads of the same warp may need to access different offsets in 

register banks. Previous studies [Fung et al. 2009; Narasiman et al. 2011] have 

introduced low cost solutions to address this problem. HARP takes a similar 

approach and associates one logical circuit with each bank to retrieve the register 

offset at each lane independently and in parallel. Previous studies [Fung et al. 2009; 

Narasiman et al. 2011] have estimated this area overhead to be about 2.5%. 

9. CONCLUSIONS 

In this study we analyzed branch divergence under conventional SIMT accelerators 

and found that a noticeable amount of concurrent threads stay inactive/waiting while 

their context is maintained in the register file. We introduced HARP to eliminate 

inactive threads, reduce the number of waiting threads and improve SIMD efficiency. 



HARP is an innovative control-flow mechanism, which terminates, reconstructs 

and reincarnates short-life warps. The reconstructed warps enhance SIMD efficiency 

and reduce the impact of re-convergence waiting and divergence serialization by 

forming new and smaller warps using threads from different execution paths. We 

reported experiments confirming our motivating observations and compare HARP to 

conventional and alternative control-flow mechanisms. Moreover we studied how 

changes in system configurations impact overall results. We reported on hardware 

complexity and the overhead associated with the proposed design. 

 

Acknowledgments 

We thank anonymous reviewers for their valuable comments. We also thank Ali Shafiee for his 

comments on this work. This work was supported by School of Computer Science at the Institute for 

Research in Fundamental Sciences (IPM) and the Natural Sciences and Engineering Research Council of 

Canada, Discovery Grants Program. 

REFERENCES 

AMD Inc. 2012. AMD Accelerated Parallel Processing OpenCL. 

Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M. Aamodt. 2009. Analyzing 

CUDA workloads using a detailed GPU simulator. In Proceedings of IEEE International Symposium 

on Performance Analysis of Systems and Software (ISPASS 2009). IEEE, 163-174. 

Nicolas Brunie, Sylvain Collange, and Gregory Diamos. 2012. Simultaneous branch and warp 

interweaving for sustained GPU performance. In Proceedings of the 39th Annual International 

Symposium on Computer Architecture (ISCA '12). IEEE Computer Society, Washington, DC, USA, 49-

60.  

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin 

Skadron. 2009. Rodinia: A benchmark suite for heterogeneous computing. In Proceedings of IEEE 

International Symposium on In Workload Characterization (IISWC 2009). IEEE, 44-54. 

Sylvain Collange. 2011. Stack-less SIMT reconvergence at low cost. Technical Report. Available: 

http://hal.archives-ouvertes.fr/docs/00/62/26/54/PDF/collange_sympa2011_en.pdf 

Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew Kerr, Haicheng Wu, and 

Sudhakar Yalamanchili. 2011. SIMD re-convergence at thread frontiers. In Proceedings of the 44th 

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44 '11). ACM, New York, 

NY, USA, 477-488. DOI=10.1145/2155620.2155676 http://doi.acm.org/10.1145/2155620.2155676  

Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. 2007. Dynamic Warp Formation and 

Scheduling for Efficient GPU Control Flow. In Proceedings of the 40th Annual IEEE/ACM 

International Symposium on Microarchitecture (MICRO 40). IEEE Computer Society, Washington, DC, 

USA, 407-420. DOI=10.1109/MICRO.2007.12 http://dx.doi.org/10.1109/MICRO.2007.12  

Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. 2009. Dynamic warp formation: 

Efficient MIMD control flow on SIMD graphics hardware. ACM Trans. Archit. Code Optim. 6, 2, 

Article 7 (July 2009), 37 pages. DOI=10.1145/1543753.1543756 

http://doi.acm.org/10.1145/1543753.1543756 

Wilson W. L. Fung and Tor M. Aamodt. 2011. Thread block compaction for efficient SIMT control flow. In 

Proceedings of the 2011 IEEE 17th International Symposium on High Performance Computer 

Architecture (HPCA '11). IEEE Computer Society, Washington, DC, USA, 25-36. 

Abdullah Gharaibeh and Matei Ripeanu. 2010. Size Matters: Space/Time Tradeoffs to Improve GPGPU 

Applications Performance. In Proceedings of the 2010 ACM/IEEE International Conference for High 

Performance Computing, Networking, Storage and Analysis (SC '10). IEEE Computer Society, 

Washington, DC, USA, 1-12. DOI=10.1109/SC.2010.51 http://dx.doi.org/10.1109/SC.2010.51 

Hynix Semiconductor. 2009. 1Gb (32Mx32) GDDR5 SGRAM H5GQ1H24AFR. Available: 

http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1.0).pdf 

Imagination Technologies. 2012. PowerVR Series 5 architecture guide for developers. Available: 

http://www.imgtec.com/powervr/insider/docs/PowerVR%20Series%205.Architecture%20Guide%20for%

20Developers.pdf 

Raj Jain. 1991. The art of computer systems performance analysis (Vol. 182). John Wiley & Sons. 

Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K. Mishra, Mahmut T. Kandemir, 

Onur Mutlu, Ravishankar Iyer, and Chita R. Das. 2013. OWL: cooperative thread array aware 

scheduling techniques for improving GPGPU performance. In Proceedings of the eighteenth 

international conference on Architectural support for programming languages and operating systems 

(ASPLOS '13). ACM, New York, NY, USA, 395-406. DOI=10.1145/2451116.2451158 

http://doi.acm.org/10.1145/2451116.2451158 

Khronos Group. 2013. OpenCL - The open standard for parallel programming of heterogeneous systems. 

Available: http://www.khronos.org/opencl/ 

Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. 2008. NVIDIA Tesla: A Unified 



Graphics and Computing Architecture. IEEE Micro 28, 2 (March 2008), 39-55. 

DOI=10.1109/MM.2008.31 http://dx.doi.org/10.1109/MM.2008.31 

Roberto Mijat. 2012. Take GPU Processing Power Beyond Graphics with Mali GPU Computing. Available: 

http://malideveloper.arm.com/downloads/WhitePaper_GPU_Computing_on_Mali.pdf 

Jiayuan Meng, David Tarjan, and Kevin Skadron. 2010. Dynamic warp subdivision for integrated branch 

and memory divergence tolerance. SIGARCH Comput. Archit. News 38, 3 (June 2010), 235-246. 

DOI=10.1145/1816038.1815992 http://doi.acm.org/10.1145/1816038.1815992 

Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Optimizing NUCA 

Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In Proceedings of the 40th 

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 40). IEEE Computer 

Society, Washington, DC, USA, 3-14. DOI=10.1109/MICRO.2007.30 

http://dx.doi.org/10.1109/MICRO.2007.30  

Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov, Onur Mutlu, and Yale N. 

Patt. 2011. Improving GPU performance via large warps and two-level warp scheduling. In 

Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-

44 '11). ACM, New York, NY, USA, 308-317. DOI=10.1145/2155620.2155656 

http://doi.acm.org/10.1145/2155620.2155656  

NVIDIA Corp. 2008. NVIDIA CUDA SDK 2.3 [online]. Available: https://developer.nvidia.com/cuda-toolkit-

23-downloads 

NVIDIA Corp. 2012a. CUDA C Programming Guide [online]. Available: http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html 

NVIDIA Corp. 2012b. Kepler GK110 Architecture [online]. Available: http://www.nvidia.com/content/ 

PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf 

NVIDIA Corp. 2012c. CUDA C Programming Guide, Compute Capability section [online]. Available: 

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#compute-capabilities 

NVIDIA Corp. 2012d. CUDA GPUs [online]. Available: https://developer.nvidia.com/cuda-gpus 

Minsoo Rhu and Mattan Erez. 2012. CAPRI: prediction of compaction-adequacy for handling control-

divergence in GPGPU architectures. In Proceedings of the 39th Annual International Symposium on 

Computer Architecture (ISCA '12). IEEE Computer Society, Washington, DC, USA, 61-71. 

Minsoo Rhu and Mattan Erez. 2013. The dual-path execution model for efficient GPU control flow. In 

Proceedings of the 2013 IEEE 19th International Symposium on High Performance Computer 

Architecture (HPCA) (HPCA '13). IEEE Computer Society, Washington, DC, USA, 591-602. 

DOI=10.1109/HPCA.2013.6522352 http://dx.doi.org/10.1109/HPCA.2013.6522352 

John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser Anssari, Geng 

Daniel Liu, Wen-mei W. Hwu. 2012. Parboil: A revised benchmark suite for scientific and commercial 

throughput computing. IMPACT Technical Report. 

Vasily Volkov and James W. Demmel. 2008. Benchmarking GPUs to tune dense linear algebra. In 

Proceedings of the 2008 ACM/IEEE conference on Supercomputing (SC '08). IEEE Press, Piscataway, 

NJ, USA, , Article 31 , 11 pages.  

Wikipedia. 2013. GeForce 400 Series. Available: http://en.wikipedia.org/wiki/GeForce_400_Series 

Craig M. Wittenbrink, Emmett Kilgariff, and Arjun Prabhu. 2011. Fermi GF100 GPU Architecture. IEEE 

Micro 31, 2 (March 2011), 50-59. DOI=10.1109/MM.2011.24 http://dx.doi.org/10.1109/MM.2011.24 

Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas Moshovos. 2010. 

Demystifying GPU microarchitecture through microbenchmarking. In Proceedings of IEEE 

International Symposium on Performance Analysis of Systems & Software (ISPASS 2010). IEEE, 235-

246. 

Haicheng Wu, Gregory Diamos, Jin Wang, Si Li, and Sudhakar Yalamanchili. 2012. Characterization and 

transformation of unstructured control flow in bulk synchronous GPU applications. Int. J. High 

Perform. Comput. Appl. 26, 2 (May 2012), 170-185. DOI=10.1177/1094342011434814 

http://dx.doi.org/10.1177/1094342011434814  

Xuejun Yang, Xiangke Liao, Kai Lu, Qingfeng Hu, Junqiang Song, Jinshu Su. 2011. The TianHe-1A 

Supercomputer: Its Hardware and Software. J. Comput. Sci. Technol. 26(3), 344-351. 

George L. Yuan, Ali Bakhoda, and Tor M. Aamodt. 2009. Complexity effective memory access scheduling 

for many-core accelerator architectures. In Proceedings of the 42nd Annual IEEE/ACM International 

Symposium on Microarchitecture (MICRO 42). ACM, New York, NY, USA, 34-44. 

DOI=10.1145/1669112.1669119 http://doi.acm.org/10.1145/1669112.1669119 

 
Received December 2012;  revised September 2013;  accepted October 2013 
 


