
A Case Against Small Data Types in GPGPUs

Ahmad Lashgar
Department of Electrical and Computer Engineering

University of Victoria
Email: lashgar@uvic.ca

Amirali Baniasadi
Department of Electrical and Computer Engineering

University of Victoria
Email: amiralib@uvic.ca

Abstract—In this paper, we study application behavior in
GPGPUs. We investigate how data type impacts performance in
different applications. As we show, expectedly, some applications
can take significant advantage of small data types. Such applica-
tions benefit from small data types as a result of increasing cache
effective capacity, reducing memory pressure, access latency, and
memory bandwidth demand. This typical behavior, however, has
some exceptions.

In this work we show that although using small data types
can improve memory efficiency, it can also degrade performance
due to an increase in the number of cache miss handling stalls.
We present 1D stencil application as a case example where this
occurs.

We analyze our findings through a combination of real-
hardware and cycle-accurate simulation. Studying regular highly-
coalesced memory pattern, we conclude that cache miss handling
resources can play an important role in negating small data type
advantages.

I. INTRODUCTION

Typical data-parallel applications perform the same opera-
tion on many independent elements iteratively. Such individual
elements can be particles’ masses in an N-body simulation [1],
elements of a large matrix in matrix-matrix multiplication [3]
or pixels in 3D rendering [2].

Several parameters can impact the developers’ decision
regarding the data type used for data elements. One key factor
is calculation precision. This sets a lower-bound on the number
of essential bytes to avoid calculation overflow/underflow.
Other impacting issues are cache and memory subsystem
considerations. Smaller data types may increase the effective
capacity of on-chip caches, as space is used more conser-
vatively. Additionally, smaller data types can lower memory
bandwidth demand and reduce memory latency. Another im-
pacting parameter is instruction delay. Although 4-, 2-, and 1-
byte integer operations have the same delay in most general-
purpose processors, the delay of 4-byte and 8-byte floating
point operations differ significantly [13]. This can further
motivate developers to use imprecise yet faster data types and
refine the precision through extra operations [5] in compute-
bounded applications. In general, deciding the elements’ data
type comes with a tradeoff between performance (memory
efficiency and instruction latency) and calculation precision.

In this study, we relax the precision constraint and in-
vestigate how data type decisions can affect performance in
GPGPU. We study three different benchmarks from different
application domains and as representatives of typical data-
parallel applications. We include applications from image
processing, linear algebra, and computer graphics. Intuitively

we would expect that small data type sizes outperform large
data type sizes consistently due to less bandwidth and cache
pressure. However, as we show in this study, there are cases
where using small data types degrades performance. We ana-
lyze this behavior and provide insight regarding the reasons
behind it. Exploring different behaviors, we investigate the
miss handling organization used in GPGPUs. We investigate
critical miss handling resources and discuss scenarios that can
stall load/store units in these processors.

In summary, we make following contributions:

• In GPGPUs, we study three applications, matrix-
matrix multiplication, 1D stencil, and stereo matching,
under different data type sizes. We show smaller data
types may improve or degrade performance.

• We show that data type can impact the number of
core stalls significantly, leading to a huge impact
on performance. We show data type variations make
such impact by affecting MSHR (Miss Status Hold-
ing Register) table contention or memory coalescing
capabilities.

• We study 1D stencil test case, a highly-regular
memory-bounded application as an example of when
using smaller data types fails. We analyze the behavior
of this test case under various data type sizes and
measure memory efficiency, instruction throughput,
and core stalls.

• We use a combination of real hardware measurements
and simulations to analyze the test case. First, we show
how our simulation follows the performance trend of
real hardware, when executing the test case under
different data types. Then, we use simulations to inves-
tigate hardware bottlenecks under different data type
sizes. We also exploit simulation flexibility to evaluate
performance under various microarchitecture changes;
including different MSHR/cache configurations.

The remainder of this paper is organized as follows. In
Section II, we report how applications react to different data
sizes. In Section III, we present an overview of the baseline
GPGPU. In Section IV, we discuss different types of stalls that
may occur upon handling a memory request. In Section V, we
introduce our implementation of 1D stencil. In Section VI,
we present our methodology for evaluations. In Section VII,
we present experimental results analyzing 1D stencil under
different data type sizes. In Section VIII, we discuss how our
findings vary under different architectures or memory patterns.
In Section IX, we review related works. Finally, in Section X,
we discuss concluding remarks.

stereo
matching

matrix-matrix
multiply

1D Stencil
0

0.2
0.4
0.6
0.8

1
1.2

N
or

m
.e

xe
cu

tio
n

tim
e

int short char

Figure 1. Execution time of different applications under varying data type
sizes.

II. APPLICATIONS AND DATA TYPES

In this section, we discuss three different applications and
how they behave under varying data type sizes. We evaluate
matrix-matrix multiplication, 1D stencil, and stereo matching.
We have implemented each benchmark in CUDA.

Matrix-matrix multiplication: In matrix-matrix multipli-
cation, every working thread calculates one element of the
output matrix. Hence, every thread reads i) one entire row of
the first input matrix and ii) one entire column of the second
input matrix.

1D stencil: In every iteration of 1D stencil, every working
thread computes one element in the output. Each thread stores
the sum of three neighbor elements in the input at the output
array.

Stereo matching: We perform stereo matching through
belief propagation algorithm [4]. In each iteration, 16 labels
are propagated to right, left, up, and down directions, respec-
tively. Upon horizontal propagation, each thread performs the
operations for one entire row while upon vertical propagation,
each thread performs the operations for one entire column.

The basic element of operations in matrix-matrix multipli-
cation, 1D stencil, and stereo matching is an element in matrix,
an element in array, and a label in disparity map. We evaluate
the performance of these benchmarks under varying basic
element’s data type sizes. We assume three basic element sizes:
4-byte integer (int), 2-byte integer (short), and 1-byte integer
(char). In order to do this, we re-compile each benchmark three
times, once for each data type.

Figure 1 reports the kernel’s execution time for matrix-
matrix multiplication, 1D stencil, and stereo matching under
varying data type sizes (refer to Section VI for the method-
ology). Under stereo matching workload, smaller data types
reduce execution time significantly. In this workload, using
char data type reduces the execution time by 37%. Although
the same trend can be seen in matrix-matrix multiplication, the
performance impact is much lower (less than 3% gap between
int and char). Under 1D stencil, however, we see a different
trend; optimal data type for performance is short which is a
type between the largest and smallest data type. short data type
outperfoms int and char by 11% and 12%, respectively.

In the remainder of this paper, we investigate the underly-
ing GPGPU-like microarchitecture and memory pattern of 1D
stencil to find the reason behind this observation.

Figure 2. (a) High-level design of a GPU chip. (b) microarchitecture of SM.

III. BACKGROUND

CUDA workload is composed of millions of threads.
To reduce inter-thread communications, threads are restricted
to communicate with threads within the same thread-block.
Thread-blocks are the coarse scheduling elements whose
threads execute on the same Streaming Multiprocessors (SMs)
concurrently. A GPU may have one or more SMs and CUDA
workload should have enough thread-blocks to occupy the
entire GPU.

Figure 2a shows the microarchitecture of a typical GPU.
SMs send memory requests to the on-chip NoC and fetch
memory lines from memory controllers. Memory bandwidth
can be very high (150 to 320 GB/s) and memory access latency
takes hundreds of cycles (100 to 1000 cycles). Figure 2b shows
the microarchitecture of an SM. Each SM is a SIMD deep-
multithreaded pipelined processor.

SM interleaves the execution of thousands of threads. In
order to reduce the scheduling overhead in the pipeline front-
end, threads are grouped into coarser scheduling elements
referred to as warps. Threads within a warp are processed in
lock-step, enhancing efficiency for the SIMD units employed
in the pipeline backend. Each cycle, the warp scheduler issues
a ready instruction from a warp to ALU, SFU, or LSU. ALU
(executing logical/arithmetic operations) and SFU (executing
special functions, e.g. logarithm) are SIMD units (256 to 2048-
bit wide). Upon execution, every individual thread of a warp
occupies one SIMD lane of ALU/SFU. LSU executes load and
store instructions. LSU can access one cache line every core
cycle and can coalesce the memory accesses of the threads
within the same warp (if accessing the same cache line).
Otherwise, LSU serves threads serially.

LSU can access memory hierarchy to fetch the requested
data. First, LSU sends a request to the highest level, per SM
L1 cache. Upon an L1 miss, data should be fetched from
lower memory levels. Under such circumstances, LSU reserves
one cache line to fill in the fetched data. It also reserves one
MSHR entry per outstanding memory access (every L1 cache
has a few dedicated MSHRs). Then, it sends a request for
the required data to the lower memory level, L2 cache in this
microarchitecture. LSU pipeline may stall upon an L1 cache
miss due to the lack of enough cache lines or MSHR resources
(number of MSHRs or possible mergers). In the next section,
we discuss how such stalls may occur. We also discuss how
these stalls relate to the memory access pattern and size of
data type.

IV. CACHE MISS HANDLING STALLS

Upon executing a warp of memory threads, LSU groups
thread accesses to the same cache line and satisfies each re-
quest group one-by-one serially. After grouping, LSU performs
the following operations to satisfy each memory request group.

The process starts by looking up the requested tag line
in the L1 cache. If the line exists in the cache, it can be
fetched and the request is satisfied. Otherwise, before sending
a memory request, LSU lookups MSHRs for an outstanding
memory request to the same line. If the same request exists
and the MSHR entry has a free field to merge another memory
request, LSU merges the pending request with the existing
request. If there isn’t a free merger field, LSU stalls the
pipeline and waits for a free field. If there is a free merger field,
no further operation is required and the request is satisfied.
Otherwise, if there is no existing request for the same line,
LSU should reserve i) one cache line and ii) one MSHR entry
for the new request. If either of reservations fail, LSU pipeline
stalls and waits for the resource to be freed.

The number of outstanding accesses supported by the cache
determines maximum memory-level parallelism (MLP [14])
that it can provide. For every outstanding cache miss, LSU
reserves an MSHR entry to track the request. Moreover, it
reserves a cache line that is to be filled upon the arrival of
data from lower memory levels. Under best case scenario, the
concurrent number of outstanding memory requests per SM is:

min(#cacheLines,#MSHRs)

where #cacheLines and #MSHRs refer to the number of lines
in the L1 cache and the number of entries in the MSHR table,
respectively. However, the number of outstanding memory
requests often exceeds this minimum as each MSHR entry
can be shared (or merged) with a few other memory requests,
accessing the same line. Therefore, maximum outstanding
memory requests per SM is:

#MSHRMergers×min(#cacheLines,#MSHRs)

where #MSHRMergers refers to the number of merger fields
in each MSHR entry. A more challenging scenario happens
once all outstanding cache misses are mapped to the same set.
Accordingly, the maximum outstanding memory requests is
limited by the number of ways in a cache set, as indicated by
the following:

#MSHRMergers×min(#wayInaSet,#MSHRs)

where #wayInaSet refers to the number of ways available in
each L1 cache set. And finally, the worst case scenario happens
once all outstanding cache misses are mapped to the same set
and need the same line too. Note that in this case the cache
can only have #MSHRMerger outstanding memory requests.
At this worst case, due to structural hazards, warps are stalled
in LSU. They also may stall dependent instructions due to
the data dependency, dropping ALU and SFU utilization and
degrading performance. Figure 3 illustrates an example on how
the worst case scenario may occur.

The worst case scenario may occur more frequently upon
performing operations on data types which are small in size,
e.g. 1-byte per element. This happens when warps of the
same thread-block are operating on the neighbor small data

Figure 3. Example of contention on MSHRs that leads to significant number
of stalls. microarchitecture details are excluded for simplicity. In this example,
there are eight concurrent warps, two L1 cache lines and two MSHR entries.
Each MSHR entry records the requested address (ADDR) and the reserved
cache line ($ID). Also each entry can merge requests of up to two warps
(MW0 and MW1), if the two need the same line. In this snapshot, one MSHR
entry is reserved for W0 and W1. The entry tracks the request for 0x0A from
lower memory levels. Assume the next instruction of these warps are i) ALU
operation and ii) stalled due to data dependency (as depicted in Warp Pool by
an ALU word nearby the warp). LSU calculates the address for next warp,
W2. W2 needs 0x0A, the same line as W0 and W1. LSU cannot merge W2’s
request with the existing one since both merger fields are already occupied
(by W0 and W1). Meanwhile, although there is an empty entry in MSHRs,
LSU cannot book W2’s anywhere else in MSHRs table. This is because one
memory line is not allowed to be placed in two different ways of a cache.
Therefore, LSU stalls its pipeline and waits until it satisfies W2’s request.
Looking at Warp Pool, we find W3 to W7 which are ready to execute an LSU
operation. However, stall of LSU pipeline leads to a structural hazard and
delays W3, W4, W5, W6, and W7. As illustrated in this example, occurrence
of the worst case scenario can stall many warps.

elements. Although performing on adjacent elements improves
data locality and cache/memory efficiency, warps of the same
thread-block generate a higher number of memory accesses
mapping to the same cache line. These warps send a request
for the same cache line and occupy the same MSHR. Due
to the limited capacity of each MSHR entry, it cannot merge
all accesses. Therefore, some of the warps stall at LSU and
wait for resource availability (MSHR merger field in this case).
These stalls can be significant and even harm the memory
bandwidth/latency gain that is coming from small data types.
In the next section, we investigate this further and show how
it harms performance in 1D stencil test case.

V. CASE STUDY: 1D STENCIL

We investigate 1D stencil operation as a case where using
small data types harms performance. To do so, we study
the impact of data type size on performance, memory band-
width/latency, and MSHR merging stalls.

Equation 1 defines 1D stencil operations calculating the
average of three elements as the output for each element.

a[i] =

{
(a[i− 1] + a[i] + a[i+ 1])/3 if 1 < i < n
a[i] otherwise (1)

We assume n elements for the input/output array. In our
implementation, two distinct arrays are allocated for input and
output. 1D stencil is an iterative algorithm, repeating Equation
1 for certain number of iterations. Since these operations

Table I. GTX 480 CARD SPECIFICATIONS.

Compute Capability 2.0
DRAM size 1535 MB
SMs 15
CUDA cores per SM 32
Core clock 1.40 GHz
Memory clock 1.8 GHz
Memory bus width 384-bit
L2 Cache Size 786 KB
Warp size 32
Max. threads per block 1024

Table II. GPGPU-SIM CONFIGURATIONS FOR MODELING GTX 480.

GPU chip
SMs 15
Memory controllers 6
Sub partition / memory controller 2

L1 Cache / SM
Size 16KB
sets 32
ways / set 4
line size 128 Bytes
MSHR entries 32
MSHR merger fields / MSHR entry 8

L2 Cache / sub partition
Size 64KB
sets 64
ways / set 8
line size 128 Bytes
MSHR entries 32
MSHR merger fields / MSHR entry 4

are performed iteratively, all array elements will eventually
communicate with each other indirectly. The memory access
pattern associated with this application is highly regular and
does not change over different iterations.

We evaluate 1D stencil under different input/output data
types; 4-byte, 2-byte, and 1-byte array elements. Using smaller
data types for array elements can save memory bandwidth.
This is due to the fact that the same operations are per-
formed while fetching fewer data from memory (compared
to larger data types). Additionally, smaller data types can
save memory latency since fewer memory requests are made.
At the downside, small data types may exacerbate MSHR
merging stalls since many warps need the same cache line.
For example, consider a benchmark where adjacent threads
access consecutive array elements. Under such circumstances,
assuming 1-byte array elements, 128-byte cache lines, and 32-
thread warps, 128 consequent threads (four warps) need their
data from the same cache line. As we illustrated in Figure 3,
these warps, if executed back-to-back, may occupy the MSHR
merger fields and stall LSU and other concurrent warps. In
the next section, we evaluate this issue in depth and report the
memory bandwidth/latency gains and MSHR merging stalls.

VI. METHODOLOGY

In Section VII, we evaluate performance of 1D stencil.
Our evaluations include measuring execution time, instruction
throughput, total number of memory accesses, DRAM band-
width utilization, memory access latency, L1 cache miss rate,
and core stalls. We exploit both real and simulated GPUs
to perform our evaluations. While the real GPU is used to
measure performance, we perform cycle-accurate simulations
to analyze parameters impacting performance further in-depth.
Also simulation’s flexibility allows studying and investigating

simulated real
0

0.2
0.4
0.6
0.8

1
1.2

N
or

m
.e

xe
cu

tio
n

tim
e

int short char

Figure 4. Normalized execution time of 1D stencil under real/simulated GTX
480 and different data types (int, short, and char are 4-, 2-, and 1-byte per
element).

the impact of increasing/decreasing the resources. We use
NVIDIA GeForce GTX 480 card as the real GPU in our
evaluations. Table I reports the card specifications. The system
has 12 GB of main memory RAM and one Intel Core i7
960 as CPU. We use GPGPU-sim 3.2.2 [6], cycle-accurate
performance and power simulator, to model GTX 480. We
use the configuration files provided publicly for GTX 480
in the GPGPU-sim package. Table II reports configuration
parameters which are used in our evaluations.

We have implemented 1D stencil algorithm in CUDA [7].
We assume 256 threads (or eight warps) per thread-block. Also
we run the algorithm for four iterations and 512K elements
in array. We use CUDA 4.0 as the runtime environment. For
performance evaluations, we report the kernel execution time
and exclude GPU initializations and memory transfers. On real
hardware evaluations, we use CUDA Profiler [8] to measure
the kernel time. For the simulated GPU, we report the number
of simulation cycles taken to execute the kernel. For real
hardware, every reported number is the harmonic mean of 30
different runs.

VII. EXPERIMENTAL RESULTS

In this section, we investigate 1D stencil under different
data types.

A. Performance

Figure 4 reports the normalized execution time of 1D
stencil with different data types under real and simulated GTX
480. int bars report 1D stencil time under 4-byte elements for
input/output array. Similarly, short and char bars report the
time under 2-byte and 1-byte elements, respectively. Unlike
matrix-matrix multiplication and stereo matching where perfor-
mance improves upon moving to shorter data types, the optimal
data type in 1D stencil is in the middle. The same trend can
be seen under both real hardware and simulator evaluations;
performance starts to improve upon moving from 4-byte (int)
to 2-byte (short) elements and degrades upon moving from
2-byte (short) to 1-byte (char) elements.

B. In-depth analysis

In this section, we further analyze 1D stencil under GTX
480 simulation. Figure 5 reports the memory efficiency met-
rics, including total number of memory requests, DRAM
bandwidth utilization, average memory access latency, and
L1 cache miss rate, under different data types. As reported,

0 0.5 1 1.5 2 2.5

·105

int
short
char

(a) Total Number of Memory Requests

0 0.2 0.4 0.6 0.8 1

int
short
char

(b) DRAM Bandwidth Utilization

0 100 200 300 400 500 600 700

int
short
char

(c) Average Memory Access Latency

0 0.2 0.4 0.6 0.8 1

int
short
char

(d) L1 Cache Miss Rate

Figure 5. Memory efficiency metrics under different data types for 1D stencil.

smaller data type sizes achieve higher memory efficiency. Total
number of memory accesses made by smaller data types is
lower than larger data types. For example, using char data type
reduces memory accesses by 24%, compared to int. Accessing
memory infrequently can drop DRAM bandwidth utilization
and average memory latency. As reported in Figure 5 (b) and
(c), using char data type reduces DRAM bandwidth utilization
and average memory latency by 31% and 65%, respectively,
compared to int. Using smaller data types, the demanded
data of thread-blocks fits in fewer cache lines. Therefore,
smaller data types can improve the effective cache capacity. As
reported in Figure 5 (d), smaller data types reduce L1 cache
miss rate by 8%-11%.

Despite the significant gain in memory efficiency, smaller
data types may increase congestion on single cache line and
MSHR entry. To investigate this congestion, we report the
breakdown of total number of stalls in Figure 6. Legends
indicate the number of cycles that the LSU is stalled due to:

• nomerger: lack of enough merger fields in MSHR
entry.

• nomshrline: lack of free MSHR lines.

• nocacheline: lack of enough L1 cache lines to reserve
for outstanding cache misses.

• coalescing: access serialization to different cache
lines, within the same warp.

Moving from 4-byte (int) to 2-byte (short) and 1-byte (char),
we observe a significant increase in the number of nomerger
stalls and significant decrease in coalescing stalls. Smaller data
types place more array elements into one cache line. This
increases the rate of concurrent requests for the same cache
line from different threads. Hence, threads’ memory accesses
congest on an MSHR entry and occupy all of its MSHR merger

0 0.5 1 1.5 2 2.5

·106

int
short
char

The number of stalls

nomerger nomshrline nocacheline
coalescing

Figure 6. Breakdown of stalls under 1D stencil for different data types.

GTX480
MSHR+

MSHR-

MSHRMergers+

MSHRMergers-
Sets+ Sets-

Ways+
Ways-

0
100
200
300
400
500
600
700

In
st

ru
ct

io
ns

pe
r

C
yc

le int short char

Figure 7. Performance potential behind various cache and memory fetching
resources. MSHR, MSHRMergers, Sets, and Ways indicate a change in number
of MSHR entries, MSHR merger entries, L1 sets, and L1 ways in set,
respectively. + or - indicate 2X higher or lower resources, respectively.

fields. This explains why we observe a significant number
of nomerger stalls for smaller data types. Meanwhile, having
more array elements in the same cache line reduces the number
of coalescing stalls. Under smaller data types in 1D stencil,
threads of a warp are more likely to need the same cache
line, reducing the number of cache access serialization and
coalescing stalls.

C. Performance potential

Figure 7 reports performance when increasing/decreasing
various cache or memory fetching resources. The first group
on left reports performance under baseline GTX 480. Each
remaining group has almost the same configuration as GTX
480, except for doubling (denoted by +) or halving (denoted
by -). For example, MSHR+ is a machine exploiting L1 MSHR
tables which have 2X higher MSHR entries than GTX 480
(64 entries per table). Similarly, MSHRMerger+ is a machine
exploiting 2X higher MSHR merger fields per MSHR entry
(16 merger fields per entry). The last four groups report
performance under machines having 2X higher/lower number
of sets/ways in L1 cache.

As reported in the figure, no change to these resources
impact int’s performance heavily as int performance is limited
by memory latency and coalescing stalls. However, smaller
data types can take advantage of higher number of merger
fields to improve performance. Increasing merger fields by 2X
(MSHRMergers+) widens the gap between int and char by
26%. In contrary, cutting the number of merger fields to half
(MSHRMergers-) degrades performance of short and char by
52% and 25%.

The number of mergers impacts performance of short
more than char. Under the baseline machine, while char’s
performance is heavily bounded by the number of mergers,
short’s performance is not yet limited by the number of merg-
ers. However, under MSHRMergers- machine, performance of
short and char both are limited by the number of mergers and
therefore, short performance drops significantly (compared to
baseline machine). In this case, char outperforms short since
both are limited by the number of mergers and char has higher
memory efficiency.

VIII. DISCUSSION

Different architectures. We have re-evaluated our find-
ing on alternative GPGPUs: NVIDIA GeForce GTX640 and
GTX280. Memory hierarchy of GTX640 is similar to our
baseline GTX480 and it exploits L1 data cache per SM. Under
GTX640, we observed a similar trend to GTX 480. char
data type performs the worst in stereo-matching, matrix-matrix
multiplication, and 1D stencil. short outperforms int in stereo
matching and 1D stencil. int data type performs the best under
matrix-matrix multiplication. However, under GTX280 a differ
trend is observed; smaller data types consistently perform
better than larger. This is the result of the absence of L1 cache
in GTX280, mitigating the impacts of MSHR contention under
smaller data types.

Memory pattern. We expect to see high number of
stalls on MSHR merger fields in applications exhibiting the
following characteristics: i) using small data type for array
elements, ii) individual threads of a warp accessing consequent
elements of an array, iii) warps of a thread-block accessing
consequent data regions. In such applications, smaller data type
sizes fit the data of specific thread-block into fewer cache lines.
Since the total number of memory accesses does not change
with data type variations, these applications experience higher
contention on MSHR merger fields under smaller data types.

IX. RELATED WORKS

Kerr et al. [11] introduced several metrics to analyze the
behavior of CUDA programs. The metrics represent memory
intensity, memory efficiency, and branch divergence behavior.
Lei et al. [9] implemented the mixed precision algorithm for
linear algebra in CUDA. The mixed precision algorithm uses
single-precision calculation and precision refinement process
to achieve the precision of double, while significantly im-
proving performance. Jia et al. [10] introduced a regression-
based model to predict GPGPU workload execution time. They
also used the model to identify key bottlenecks of GPGPU
microarchitecture. According to their analysis, SIMD width is
the most impacting parameter across the evaluated workloads.
Jia et al. [12] introduced MRPB to mitigate cache thrashing.
They performed evaluation under the cache system similar to
what we have studied in this paper. MRPB reorders/bypasses
the requests to avoid inter-warp cache contentions. MRPB is a
unit inside the LSU reordering the requests after the coalescer
module. Although they discuss lack of MSHR entry or cache
line stalls, they overlook MSHR merger stalls.

X. CONCLUSION

Developers of data-parallel applications decide the data
type for individual elements based on a tradeoff between

performance and calculation precision. In this study, we re-
laxed the precision constraint and studied the performance
impact under GPGPU microarchitectures. First, we showed
that the variations of data type size may improve or degrade
performance, depending on the application behavior. Then,
we investigated the bottlenecks in large/small data type sizes
through a cycle-accurate GPGPU simulator. Specifically, we
identified key bottlenecks in memory access and miss handling
resources. We showed coalescing stalls are critical under
larger data types. We also showed miss merging resources are
performance limiting under smaller data types.

XI. ACKNOWLEDGMENTS

We thank anonymous reviewers for their valuable com-
ments. This work was supported by School of Computer
Science at the Institute for Research in Fundamental Sciences
(IPM), UVic Fellowship of University of Victoria, and the Nat-
ural Sciences and Engineering Research Council of Canada,
Discovery Grants Program.

REFERENCES

[1] L. Nyland et al. Fast n-body simulation with cuda. GPU gems, 3, 677-
695. 2007.

[2] T. Aila and S. Laine. Understanding the efficiency of ray traversal on
GPUs. In Proceedings of the Conference on High Performance Graphics
2009 (HPG ’09), Stephen N. Spencer, David McAllister, Matt Pharr, and
Ingo Wald (Eds.). ACM, New York, NY, USA, 145-149.

[3] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense
linear algebra. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing (SC ’08). IEEE Press, Piscataway, NJ, USA, , Article
31 , 11 pages.

[4] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient Belief Propagation
for Early Vision. Int. J. Comput. Vision 70, 1 (October 2006), 41-54.

[5] D. P. Playne et al. Numerical Precision and Benchmarking of Very-High-
Order Integration of Particle Dynamics on GPU Accelerators. In HR.
Arabnia, & MGS. Ashu (Eds.) Proceedings of the 2011 International
Conference on Computer Design. (pp. 83 - 89).

[6] A. Bakhoda et al. Analyzing CUDA workloads using a detailed GPU
simulator. IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). pp.163,174, 26-28 April 2009

[7] J. Nickolls et al. Scalable Parallel Programming with CUDA. Queue 6,
2 (March 2008), 40-53.

[8] NVIDIA Corp. Profiler Userś Guide 2013. Available:
http://docs.nvidia.com/cuda/profiler-users-guide/

[9] W. Lei et al. Accelerating Linpack Performance with Mixed Precision
Algorithm on CPU+GPGPU Heterogeneous Cluster. IEEE 10th Inter-
national Conference on Computer and Information Technology (CIT).
pp.1169,1174, June 29-July 1 2010

[10] W. Jia et al. Stargazer: Automated regression-based GPU design space
exploration. IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). pp.2,13, 1-3 April 2012

[11] A. Kerr et al. A characterization and analysis of PTX kernels. Workload
Characterization. IISWC 2009. pp.3,12, 4-6 Oct. 2009

[12] W. Jia et al. MRPB: Memory Request Prioritization for Massively
Parallel Processors. The 20th Int. Symp. on High Performance Computer
Architecture (HPCA 2014)

[13] H. Wong et al. Demystifying GPU microarchitecture through mi-
crobenchmarking. Performance Analysis of Systems & Software (IS-
PASS), 2010 IEEE International Symposium on , vol., no., pp.235,246,
28-30 March 2010

[14] J. Meng et al. Dynamic warp subdivision for integrated branch and
memory divergence tolerance. SIGARCH Comput. Archit. News 38, 3
(June 2010), 235-246.

