
Rethinking Prefetching in GPGPUs: Exploiting Unique Opportunities

Ahmad Lashgar
Electrical and Computer Engineering

University of Victoria
Victoria, BC, Canada

Email: lashgar@uvic.ca

Amirali Baniasadi
Electrical and Computer Engineering

University of Victoria
Victoria, BC, Canada

Email: amirali@ece.uvic.ca

Abstract—In this paper we investigate static memory access
predictability in GPGPU workloads, at the thread block granu-
larity. We first show that a significant share of accessed memory
addresses can be predicted using thread block identifiers. We
build on this observation and introduce a hardware-software
prefetching scheme to reduce average memory access time. Our
proposed scheme issues the memory requests of thread block
before it starts execution. The scheme relies on static analyzer
to parse the kernel and find predictable memory accesses.
Runtime API calls pass this information to the hardware.
Hardware dynamically prefetches the data of each thread block
based on this information. In our scheme, prefetch accuracy
is controlled by software (static analyzer and API calls) and
hardware controls the prefetching timeliness. We introduce few
machine models to explore the design space and performance
potential behind the scheme. Our evaluation shows that the
scheme can achieve a performance improvement of 59% over
the baseline without prefetching.

I. INTRODUCTION

Hardware or software prefetching mechanisms have been
investigated as techniques to improve performance and
energy-efficiency in computing systems by reducing average
memory access latency. An effective prefetching mechanism
must address three challenges: prefetching accuracy, timeli-
ness, and extra memory bandwidth usage. First, prefetching
mechanism must predict the memory addresses correctly.
Wrong predictions may harm performance by increasing
the number of memory requests, occupying on-chip buffers
more often, increasing memory latency, and wasting memory
bandwidth. Second, the correctly predicted data should be
fetched timely; not too early, not too late. Otherwise, the
prefetched data may not be fed to thread; if prefetched early,
data might be evicted before the real request or if prefetched
late, prefetching can impose redundant non- advantageous
memory fetches. Finally, prefetching usually results in extra
traffic, along the application traffic, to fetch data from lower
memory levels. Effectiveness of a prefetching mechanism
relies on smart bandwidth usage management.

In this paper, we study GPGPUs and identify unique op-
portunities to address the aforementioned three challenges.
In GPGPUs, hundreds of the threads are grouped into
thread blocks. Since threads of the same thread block share
many resources, programmers are encouraged to increase the

locality within the thread block. As we show in this paper, in
most cases, each thread block works on a tile of data, which
is statically predictable for a given thread block. Exploiting
this behavior, we address prefetching challenges.

We propose a prefetching scheme working at the thread
block granularity. We introduce a combination of software
and hardware techniques. We use software solutions to
address the accuracy challenge of prefetching and hardware
solutions to address timeliness and memory bandwidth chal-
lenges.

On the software side, we develop a static analyzer to parse
GPU kernel and determine the ranges of the data that each
thread block accesses. Extra procedure calls are introduced
to pass these information in an abstract form to GPU. The
procedure calls set a prefetch table in the hardware, right at
the kernel launch time.

On the hardware side, a prefetch table per kernel is
maintained. Upon initializing a new thread block for execu-
tion, the thread block dispatcher injects a burst of memory
requests to fetch the thread block’s data, based on the
information maintained by the prefetch table. To assure the
prefetching timeliness, all threads of the thread block are
stalled until prefetching is finished. Stalling has also the
advantage of stoping threads from issuing redundant mem-
ory accesses, avoiding the generation of excessive memory
bandwidth traffic that prefetchers are prone to.

We develop various machine models to investigate the
performance potential behind this scheme. We show the
proposed scheme can achieve up to 59% performance im-
provement over the baseline without prefetching.

The remainder of this paper is organized as follows. In
Section II, we investigate the static predictability of memory
accesses in GPGPU workloads. In Section III, we introduce
our hardware-software approach for prefetching. In Section
IV, we overview experimental methodology. In Section V,
we investigate the performance potential of the proposed
prefetching system. In Section VI, we review previous work.
Finally, in Section VII, we offer concluding remarks.

II. STATIC PREDICTABILITY OF MEMORY ACCESSES

In this Section, we investigate the static predictability of
memory accesses in GPGPUs. In particular, we investigate



the static predictability of global memory accesses in CUDA
benchmarks. We developed a static analyzer parsing one
CUDA for C kernel at a time. For each kernel, the static
analyzer performs three phases. First, the analyzer forms
a list of variable names which are listed in the kernel’s
arguments as pointer variables. These pointers essentially
point to a location in the global memory. Within the kernel,
each pointer is treated as array. Second, for each of these
arrays, the static analyzer extracts the array indexes which
are referred in the kernel body. Finally, the static analyzer
examines static predictability of the value of each index.
Below we explain our definition of static predictability and
report the findings of static analysis under different CUDA
kernels.

A. Static Predictability

We classify array indexes into statically predictable,
quasi-static predictable, and unpredictable, based on the
static predictability of the index value. We declare the
predictability of index values based on the operators (add,
multiply, shift, etc.) and terms (variables or constants) con-
structing the index expression. We identify predictability in
two steps:

Processing operators. We consider index as unpre-
dictable if it is composed of any operator other than addition,
subtraction, and multiplication. As we clarify later, this
reduces hardware complexity for address calculations on
predictable addresses.

Processing terms. If the index is not found unpredictable
in previous step, then the analyzer examines the terms of
the expression as it might be predictable (either statically or
quasi-static). The index is statically predictable, if the terms
are values or constant variables (e.g. a[0] or a[blockDim.x]
in CUDA). The index is quasi-static predictable, if the
memory index term depends on at least one built-in CUDA
thread identifier (threadIdx or blockIdx). Since the thread and
thread block identifiers are known at the time of dispatching
the thread block, we refer to this type as quasi-static pre-
dictable. In unpredictable, the memory index term depends
on a runtime variable. A runtime variable can be a memory
location (e.g. a[b[0]]) or a control-dependent variable (e.g.
a[condition?1:0]).

B. Results

Here we report static predictability findings in 14
memory-bounded benchmarks, as measured by our static
analyzer (for the methodology refer to Section IV). Figure 1
reports the number of unique global memory arrays found in
the kernel body of various benchmarks. Indeed, these arrays
are the pointer variables in the kernel’s arguments. The figure
also reports the number of array indexes found in the kernel
(only memory reads). In the case of multiple kernels in the
benchmark (which is the case for BKP, BPT, NN, RDC, and
SRD), we report the summation of arrays and indexes which

B
FS

B
K

P
B

PT
E

D
S

FL
D

FW
L

H
SP

L
PS

M
M

A
M

U
M

N
N

C
N

N
R

D
C

SR
D

0
10
20
30
40
50
60
70
80

In
de

x
in

st
an

ce
s

Indexes

0

5

10

15

20 A
rray

instances

Arrays

Figure 1. The number of arrays and indexes identified by the static
analyzer.

are found in each kernel. As shown, the number of arrays
ranges from two (in NNC benchmark) to 15 (in BPT) while
the number of array indexes ranges from two (in HSP) to
71 (in BPT).

Figure 2 complements Figure 1 and reports the break-
down of array indexes into statically predictable, quasi-static
predictable, and unpredictable. As reported, none of the
array indexes are found statically predictable in the evaluated
kernels. But a significant portion of array indexes are found
quasi-static predictable. In NNC and RDC, unpredictable
array indexes depend on an induction variable. While we
consider them unpredictable in the breakdown, this type
may also be considered as quasi-static predictable, if the
boundaries of the loop are predictable. In LPS and MUM,
unpredictable array indexes depend on control statements.
In BPT and FLD, unpredictable array indexes depend on a
load from another array. In BFS, one of the unpredictable
array indexes depends on an induction variable and the other
unpredictable index depends on a load from another array. In
NN, 17 unpredictable array indexes depend on an induction
variable. In this case, the range of this variable can be
evaluated statically.

Generally, very high percentage of array indexes are
found to be quasi-static predictable. This number ranges
from 38% in FLD to 100% in many benchmarks. Quasi-
static predictable indexes only depend on CUDA threadIdx
and blockIdx variables which are evaluated at the time of
dispatching the thread block. Hence, during runtime, a range
of the data that each thread block accesses can be predicted.
In the rest of the paper, we build on this observation and
propose a combined software and hardware solution to
prefetch data for each thread block.

III. PROPOSED PREFETCHING SCHEME

A. Software Side

The software side of our proposed prefetching solution
includes an API for passing static analysis information
from CUDA applications to GPU hardware, at the kernel
launch time. This information is passed for the array indexes
which are marked as predictable by the static analysis. The



B
FS

B
K

P
B

PT
E

D
S

FL
D

FW
L

H
SP

L
PS

M
M

A
M

U
M

N
N

C
N

N
R

D
C

SR
D

0

25%

50%

75%

100%

N
or

m
al

iz
ed

N
um

be
r

of
In

de
xe

s Statically Pred. Quasi-Static Pred.
Unpred. (Induction) Unpred. (Indirect)
Unpred. (Control)

Figure 2. Breakdown of array indexes into statically predictable, quasi-
static predictable, and unpredictable. Unpredictable indexes are either de-
pending on induction variable (Induction), another memory load (Indirect),
or a control statement (Control).

information guides the GPU to prefetch data chunks required
by each thread block, after dispatching the thread block and
before issuing any instruction from individual threads of the
thread block. The API passes the information to the GPU
in an abstract form. Below we first discuss the essence of
information which is needed for prefetching and introduce
the API to pass that information. Secondly, we present an
example to clarify the API usage.

1) API: If the index is marked as predictable, static anal-
ysis evaluates the array index as an expression of i) thread
identifiers and ii) constant terms. Using this expression, the
value of an array index can be obtained for each thread
of thread block. Knowing the threads that belong to each
thread block, the compiler statically specifies the domain of
values that index may have within each thread block. The
domain of values of index is essentially the range between
minimum and maximum values that index may have. Since
the minimum and maximum varies for each thread block, the
compiler passes the essential information to hardware and
allows the hardware to calculate the minimum and maximum
at runtime. Below we elaborate on the essential information
that has to be passed to hardware.

In order to determine the data chunk of each thread block,
the static analyzer looks for the minimum and maximum
value of the array index for each thread block. The compiler
evaluate the index expression to specify its minimum and
maximum values based on the fact that in CUDA there are
four three-dimensional thread identifier variables: gridDim,
blockDim, blockIdx, and threadIdx. The index expression
can be reduced to only one variable (blockIdx) provided
that: i) gridDim and blockDim are constant terms within a
particular kernel and can be evaluated as a constant value,
ii) Lowest and highest values of threadIdx are constant, and
iii) blockIdx is determined at runtime upon dispatching the
thread block

Applying the above assumptions to any predictable ar-

ray index (statically predictable or quasi-static predictable)
simplifies the index to an expression of constant values and
only one runtime variable (blockIdx). In general, predictable
array index expression can be presented in the polynomial
form of Equation 1.

v = a0 +

n∑
i=1

(ai × bIdxi) (1)

where ai for 0 ≤ ai ≤ n are life-time constant terms,
bIdx is blockIdx, and n is the degree of polynomial. If an
array index is constant (or statically predictable) then ai for
1 ≤ ai ≤ n is zero. Array index is affine constraint of degree
one if ai for 2 ≤ ai ≤ n is zero. Similarly, array indexes
with affine constraint of higher degrees are possible. To sim-
plify API and hardware support, here we limit prefetching
to arrays having indexes with affine constrains of degrees
one or lower. Notice that the degree of array index can
be identified by the static analyzer by simply searching for
the number of blockIdx variables that are multiplied. In the
evaluated benchmarks, we found all quasi-static predictable
in the first degree or linear polynomial.

For every predictable array index, the static analyzer finds
a0 and a1 by parsing the dependency graph. It returns
the pair of a0 and a1 to specify minimum and maximum
values of index, based on varying values of threadIdx. Then,
the proposed API passes two (a0, a1) pairs, one for the
minimum and the other for the maximum, to guide the GPU
in specifying the lowest and highest values of the thread
block’s data. The prefetcher, on the hardware side, uses
this information and dynamically calculates the minimum
and maximum values of indexes, provided that the value
of the last unevaluated variable, blockIdx, is known at the
time of dispatching the thread block. Minimum/maximum
point to the beginning/end of range of addresses that threads
of thread blocks may request. After calculating the range
of address, the hardware sends a burst of read requests to
memory controller. This prefetches the entire range to the
GPU core that the thread block is dispatched to. The core
starts issuing instructions from this thread block as soon as
the entire range is prefetched.

Here is the proposed API prototype:
cudaSetCTATracker(baseptr, typesize,
minbidxp, minbidyp, minbidzp, minoffset,
maxbidxp, maxbidyp, maxbidzp, maxoffset);
This procedure sets registers on the GPU before kernel

launch and simplifies calculating the address of continuous
data chunk of each thread block required by the prefetcher.
The prefetcher hardware then calculates the range of data
using the following linear equations:

min = baseptr + typesize× (blockIdx.x×minbidxp

+blockIdx.y ×minbidyp

+blockIdx.z ×minbidzp+minoffset)
(2)



and a very similar equation is used for calculating max.

B. Hardware Side

Below we discuss hardware modifications of the proposed
prefetching scheme.

1) Prefetch table: The proposed API calls allow com-
piler/programmer to pass the prefetching information to
hardware. Hardware uses this information to dynamically
prefetch the data regions associated with each thread block.
To maintain this information in the hardware, we propose
enhancing thread block dispatching unit with a table; refers
to as prefetcher table. Each row of the prefetcher table
stores the information passed by a single API call. Each row
registers base pointer, data type size, minimum products, and
maximum products.

2) Prefetch controller unit: The proposed prefetch con-
troller unit, or simply prefetcher, is shared among all thread
blocks and resides in the thread block dispatching unit.
Prefetcher reads every valid row of the prefetch table to pre-
fetch the data region associated with the ready-for-dispatch
thread blocks. Upon dispatching every thread block, the
prefetcher reads each row of the prefetcher table, calculates
the boundary of data region of the row using Eq. 3 and 4,
and issues a burst of requests per row to prefetch the data
region. Requests are issued from thread block dispatcher unit
to memory controllers. In each request, prefetcher attaches
the network address of the target GPU core, the core on
which the thread block is dispatched, as the destination. This
allows the network to route the reply packets from DRAM
directly to the target core. On the core, the prefetched data
is stored in a prefetch buffer.

3) Prefetch buffer: The proposed prefetching scheme,
also extends the GPU cores with a logical prefetch buffer.
The buffer stores the burst of incoming prefetch data for
every outstanding thread block of the core. Physically, this
buffer can be a dedicated cache or available caches of GPU
core (e.g. data cache or software-managed cache). The buffer
is also responsible to count the number of received packets
for each newly scheduled yet-stalled thread block. The buffer
signals the core’s warp scheduler to activate the thread block
once all the packets from prefetching unit are received at the
core’s end.

4) Prefetch timeliness: After scheduling a thread block,
GPU core can start execution of the thread block in parallel
to the prefetcher’s prefetching operations. However, there
may be a delay between prefetching the entire thread block’s
data region into the prefetch buffer and demanding the data
by a thread within the thread block. Since handling such
cases increases the hardware complexity, we simply stall the
entire thread block until the prefetching is completed. Later,
in Section V, we show the performance potential behind
interleaving the execution of thread blocks and completing
of prefetching requests.

IV. EXPERIMENTAL METHODOLOGY

Modeling the prefetching scheme. We develop a static
analyzer that highlights predictable array indexes. We reform
this information to the proposed API calls and inject the code
manually to the benchmarks’ source code. We use GPGPU-
sim 3.2.2 [1] for modeling both hardware and software sides
of the proposed prefething scheme. We used GPGPU-sim
default configuration files to model a hardware similar to
NVIDIA GTX 480 as the baseline GPU of this study [3].

Benchmarks. We used 22 benchmarks included from Ro-
dinia, GPGPU-sim, and two third-party applications (edge-
detection by sobel filter (EDS) and matrix-matrix add
(MMA)). We limited the study to the benchmarks that are
not merely compute-bounded. We only consider benchmarks
which show tangible performance improvement under the
ideal zero-latency memory machine. We model such ma-
chine by assuming an ideal L1 caches which has a hit rate
of 100%.

V. MACHINE MODELS

The proposed prefetching scheme is prone to two perfor-
mance limiting overheads. The first overhead is the excessive
memory bandwidth usage (caused by prefetching). This
may increase average memory access latency since there
are more memory requests contending for resources. The
second overhead is stalling thread blocks till prefetching
completes. This may harm performance if there are not
enough concurrent thread blocks to hide the latency. Below
we introduce few machine models to investigate the effect
of these overheads on the performance of the proposed
prefetching scheme. We also use machine models to inves-
tigate the prefetching accuracy and DRAM impacts. For the
evaluation that follows, we assume 64 entries per prefetch
table and an ideal unlimited fully-associative prefetch buffer.
Here are the machine models:

• I-Machine: is an ideal implementation resolving both
overheads. First, no memory request is issued by
the prefetcher, so the prefetcher does not impact the
memory bandwidth. Second, the prefetcher instantly
fetches the data of each thread block into the destination
prefetch buffer making prefetching zero-latency. Hence,
thread blocks are not stalled for prefetching. This
machine shows the performance potential behind the
proposed scheme if all overheads are mitigated.

• S-Machine: is a semi-ideal implementation modeling
the memory bandwidth demand of the prefetcher but
assumes a zero-latency prefetching. The prefetcher is-
sues a burst of memory requests to prefetch the data of
every thread block. But, on the core side, the data is
ideally fed to threads in zero latency, meaning thread
blocks are not stalled and the machine instantly fetches
the data of each thread block. This machine shows
the performance potential behind the proposed scheme



once the overhead of stalling the thread blocks are
mitigated but under real bandwidth restrictions.

• R-Machine: is the non-ideal implementation model-
ing both overheads; the prefetcher memory bandwidth
demand and stalling thread blocks until completion of
prefetching requests. The only difference between this
machine and the realistic implementation is the ideal
prefetcher buffer that this machine has.

A. Performance

Figure 3 compares the performance of machine models
under various workloads. Numbers are normalized to the
baseline machine without prefetching.

Under removal of all prefteching overheads I-Machine
reports the full performance potential behind the scheme.
The numbers range between 1% to 101% improvement
over the baseline. This number is significant in BFS, EDS,
MMA, and SRD. In these cases, the prefetch buffer covers
a large portion of dynamic memory accesses (up to 86%).
Also performance improvement can be seen under HSP,
NN, and NNC. Under HSP, prefetching scheme fetches
two two-dimensional input tiles for each thread block. Also
there is an overlap among the input of different thread
blocks. This overlap contributes in improving L2 cache
hit rate. This explains why S- and R-Machine (modeling
the memory bandwidth demand of prefetcher and issue
memory requests) outperform I-Machine. Under NN, all
machines sustain the improvement of 8% which is close to
the performance of the zero-latency memory machine (9%
improvement, as reported by the label below the bar group).
Under NNC, I- and S-Machine improve the performance,
however, R-Machine negates this. Since NNC runs under
very low occupancy (thread block size is 16 and 8 thread
blocks are executed concurrently), stalling the threads for
the completion of prefetching degrades performance.

The performance potential is low under BKP, BPT, and
RDC. We explain this for each of the benchmarks separately.
Performance in BKP is not heavily bounded by memory
performance, as we found that even an ideal zero-latency
memory improves performance in BKP only by 11% (re-
ported by the label below the bars in the figure). This leaves a
little room for improving the performance with prefetching.
Under BPT, firstly, predictable memory accesses account for
a small portion of the total dynamic memory accesses. We
found that only 15% of the memory requests are covered
by the prefetcher. BPT has lots of unpredictable memory
accesses due to indirect dependencies1. Secondly, the data
type of prefetched data is an struct of two 512-element ar-
rays of ints (nearly 4K per thread block). Prefetching scheme
conservatively fetches entire bytes of these two arrays. BPT
kernel, however, is divergent and does not access whole the
array. In point of fact, one of the arrays is used thoroughly

1Indirect dependency is explained in Section II-B.

Figure 3. Comparing performance of ideal prefetching machine models.
Numbers are normalized to baseline without prefetching. At the bottom
of bars, the number indicates the speedup from the zero-latency memory
machine.

by all threads of the thread block and the accesses to the
other array is control-dependent and the array is partially
accessed. Compared to the no-prefetching baseline, the extra
memory accesses that the prefetcher issues explains why the
scheme performs poor under BPT. In RDC, there are two
kernels and 50% of array indexes are predictable in total
(as reported earlier in Figure 2). Indexes from one kernel
are all predictable while indexes from the other kernel are
all unpredictable, due to control dependencies. Despite this
seemingly promising static analysis, the predictable kernel
contributes less than 20% to the total execution time of the
RDC. This leaves little room for improving performance.

S- and R-Machine add realistic overheads to I-Machine
and, as expected, generally S- and R-Machine have lower
performance (except in HSP where realistic memory band-
width of prefetcher improves L2 cache hit rate). S-Machine
models the excessive memory bandwidth usage of the pre-
fetcher. As reported, the memory bandwidth demand of the
prefetcher may degrade performance by up to 55% (in MMA
benchmark). On average, the memory bandwidth usage of
the prefetcher impacts performance of I-Machine by less
than 6%.

Built on top of S-Machine, R-Machine also models the
overhead of stalling thread blocks until prefetching com-
pletes. This overhead may harm performance of the appli-
cations that have low occupancy, e.g. BPT (66% occupancy)
and HSP (50% occupancy). However, the application toler-
ates this overhead if the occupancy is high. For example,
in SRD, the occupancy is 100% and R-Machine is able
to improve performance by 59%. BFS, EDS, and MMA
also have occupancies of 100% which allows tolerating
the latency of stalling thread blocks and sustaining the
performance improvement of S-Machine.

B. Detailed Analysis

Prefetcher generates a burst of memory requests for a
contiguous data region. This traffic pattern can improve the
DRAM row locality by mitigating row changes. However,
this will not necessarily turn into faster DRAM, since
the prefetching scheme may meanwhile increase the total



Figure 4. Comparing average DRAM row locality of R-Machine prefetch-
ing to the baseline. Numbers above the bars indicate the ratio of the total
DRAM accesses under R-Machine to the baseline.

number of memory requests. This is the case when pre-
fetching accuracy is low or prefetcher fetches the entire data
range while the thread block sparsely accesses the range.
Generally, to have a faster DRAM, the prefetching scheme
must preserve i) high row locality at the DRAM and ii)
high hit rate at the prefetch buffer. Below we investigate
this aspect of the scheme through machine models.

DRAM row locality. To maximize exploitable locality,
we use the following two techniques in the hardware. First,
the prefetcher issues the request of a single data region
(or single entry of prefetch table or cudaSetCTATracker()
call) back-to-back, avoiding early interleaving. Second, the
memory controller prioritizes prefetcher requests over the
requests coming from GPU cores. The combination of these
techniques lowers DRAM row changes. Figure 4 compares
the average DRAM row locality of R-Machine to the base-
line. Average DRAM row locality is defined as the ratio
of total row accesses to total row changes. As shown, R-
Machine generally improves DRAM row locality. Beside
the improvements in row locality, the number of DRAM
accesses under R-Machine are higher than the baseline in
some cases, e.g. BPT and EDS. In Figure 4, this number is
shown above R-Machine bars for each benchmark, ranging
from 1% (in RDC benchmark) to 3.11X (in EDS). In BPT,
this higher memory reads are explained by the conservative
prefetching which fetches entire range of data, while the
kernel sparsely accesses the data. In EDS, data type size is
one byte. Accesses from thread of the thread block form
memory requests for 16 consequent bytes. The baseline is
able to issue variable packet sizes, e.g. 32-byte, 64-byte,
or 128-byte. Prefetcher, however, is restricted to fetch 128-
byte requests. This explains why prefetcher issues nearly 4X
higher memory requests than the baseline.

Performance of the prefetch buffer. To understand the
performance of the prefetch buffer, we report the coverage.
Coverage is defined as the percentage of the memory re-
quests that are captured by the prefetch buffer (including
both read or write requests). Figure 5 reports the coverage
and also the maximum buffer size needed by each bench-
marks. Coverage ranges from nearly zero in RDC to 90%
in NNC. Average buffer size per thread block is 2 KB (204-
byte in BKP and 10KB in NN).

B
FS

B
K

P

B
PT

E
D

S

H
SP

M
M

A

N
N

N
N

C

R
D

C

SR
D

0
20%
40%
60%
80%

100%

C
ov

er
ag

e

Coverage

0
1024
2048
3072
4092
5116

B
uffer

size
(bytes)

Buffer size

Figure 5. Maximum prefetch buffer size for a thread block and the
percentage of memory accesses that is captured by the prefetch buffer.
Buffer size for NN is 10KB.

VI. RELATED WORK

Ryoo et al [4] investigated software prefetching in matrix
multiplication test case. They found prefetching advanta-
geous as long as the register pressure does not degrade
occupancy. Lee et al. [2] evaluate several hardware pre-
fetching mechanisms. Generally, they found that memory
patterns are highly predictable. They also found out that the
real challenge is excessive memory bandwidth usage and
timeliness of the prefetcher. They introduced a threshold-
based heuristic to address these challenges. Sethia et al [5]
used prefetching as a technique to improve energy-efficiency.

VII. CONCLUSION

We investigated static predictability of memory accesses
in GPGPUs, at the thread block granularity. Finding a high
percentage of accesses predictable, we proposed a hardware-
software prefetching scheme to improve performance. In this
early presentation of our work, we focused on presenting
the potential advantages behind the scheme. It is our on
going research to further investigate this scheme, specially
in improving static analysis, optimizing API calls, and
designing an efficient prefetch buffer.

REFERENCES

[1] A. Bakhoda et al. Analyzing cuda workloads using a detailed
gpu simulator. In ISPASS 2009.

[2] J. Lee et al. Many-thread aware prefetching mechanisms for
gpgpu applications. In MICRO ’43.

[3] NVIDIA Corp. GeForce GTX 480. Available:
http://www.geforce.com/hardware/desktop-gpus/geforce-
gtx-480/specifications.

[4] S. Ryoo et al. Program optimization space pruning for a
multithreaded gpu. In CGO ’08, pages 195–204.

[5] A. Sethia et al. Apogee: Adaptive prefetching on gpus for
energy efficiency. In PACT ’13.


