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ABSTRACT

In this paper, we introduce IPMACC a framework for exe-
cuting OpenACC for C applications over OpenCL runtime.
We use over framework to compare performance of Ope-
nACC and OpenCL. OpenACC API abstractions remove the
low-level control from programmers’ hand. To understand
the low-level OpenCL optimizations that are not applicable
in OpenACC, we compare highly-optimized OpenCL and
OpenACC versions of a wide set of benchmarks. We show
that under the investigated benchmarks, exploiting scratch-
pad memory as a fast-communication link is the most impor-
tant optimization that is not applicable in OpenACC. We
also introduce a micro-benchmarking suit to investigate the
overhead of various OpenACC operations. We compare our
framework to a previous open source OpenACC compiler in
various aspects.

1. INTRODUCTION

During past few years the OpenCL programming model has
evolved as a mature accelerator programming language [24].
There are different OpenCL implementations from differ-
ent vendors available [28, 29, 30, 31], allowing the pro-
grammer to harness the processing capability of multi-core
CPUs, many-core GPGPUs and co-processors. In spite of
the prevalence of OpenCL support on various platforms,
OpenCL development effort is still non-trivial.

In this paper, we introduce IPMACC the framework for
executing OpenACC for C applications over OpenCL run-
time. IPMACC comes with a set of translators to gener-
ate an OpenCL code which is equivalent to the OpenACC
code. This offloads the programmer from tedious OpenCL
programming efforts. Instead, the OpenCL programmer
can spend time on optimizing the code generated by IP-
MACC. After translation to OpenCL, IPMACC uses the
system compiler to generate the accelerator binary from the
OpenCL code. Besides the translators, IPMACC also in-
cludes a runtime library to support dynamic memory man-
agement in OpenACC API.

We verify the correctness and evaluate the performance of
our framework under various standard benchmarks. We
include benchmarks from Rodinia Benchmark Suit [1] and
NVIDIA GPU Computing SDK [6]. We compare the per-
formance of three different implementations of these bench-
marks; OpenACC, OpenCL, and CUDA. We also introduce
a benchmarking suit to measure the timing overhead of var-
ious OpenACC operations. We report the timing overhead
of copyin, copyout, and reduction operations under OpenCL
and CUDA backends.

We investigate the reason behind the gap between the Ope-
nACC implementation and the highly optimized OpenCL
implementation of the benchmarks. Our goal is to identify
key bottlenecks in the OpenACC programming model. We
show that OpenCL optimizations in using software-managed
cache is the main reason causing a huge gap between CUDA
and OpenCL. We also show that reduction operations in
OpenACC contribute to this gap too.

In summary, we make following contributions:

e We introduce an open-source framework that trans-
lates OpenACC applications to OpenCL and CUDA
backends and executes the OpenACC applications over
OpenCL and CUDA runtimes.

e We use our framework and study OpenACC and OpenCL
implementations of various applications. We compare
the performance of the implementations and investi-
gate the algorithmic differences between them.

e We introduce an OpenACC benchmarking suit mea-
suring the timing overhead of various OpenACC oper-
ations.

e We compare the performance of the code generated by
our compiler to a previous work. We provide insight on
the decisions made by the compiler which can signifi-
cantly impact performance in OpenACC applications.

The remaining of the paper is organized as follows. In Sec-
tion 2 we review OpenCL and OpenACC programming lan-
guages. In Section 3 we overview the structure of IPMACC.
In Section 4 we explain system and software configurations
for the evaluations. Experimental results are presented in 5.
In Section 6 we overview related works. Finally, in Section
7, we present concluding remarks.



2. BACKGROUND

2.1 OpenCL Model

In OpenCL [24], an application is composed of host and
device codes. The host code executes on CPU and the de-
vice code executes on system’s accelerator. The host con-
trols the operations of the device through procedure calls to
OpenCL API. OpenCL allows programmers to explicitly al-
locate memory on device and transfer data between the host
and the device. The device obtains the device code from
kernel and executes it by thousands of light-weight work-
items or threads. All threads share common off-chip DRAM
memory or global memory. In software, threads are grouped
into coarser scheduling elements, referred to as work-groups.
Threads within the same work-group execute concurrently
and communicate through a fast, per- work-group, on-chip
software-managed cache, referred to as local memory. Lo-
cal memory is much faster than global memory; e.g. under
NVIDIA GTX 280, the latency of global memory and local
memory are 440 and 38 core cycles, respectively [19].

2.2 OpenACC Model

OpenACC API introduces a set of compiler directives, li-
brary routines, and environment variables to offload a region
of code from the CPU to the system’s accelerator [13]. We
refer to this region as the accelerator region. OpenACC has
two classes of directives: i) data management and ii) par-
allelism control. Each directive has clauses providing finer-
grain control. Data management directives perform data al-
location on the accelerator, data transfer between the host
and the accelerator, and passing pointers to the accelerator.
Parallelism control directives allow the programmer to mark
regions of code, usually work-sharing loops, intended to run
in parallel on the accelerator. They also control parallelism
granularity, variable sharing/privatization, and variable re-
duction.

Listing 1: OpenACC matrix multiplication.

#pragma acc data \
copy(a[0: LEN*LEN],b[0:LEN+LEN],c[0: LEN*LEN])
#pragma acc kernels
#pragma acc loop independent
for (i=0; i<LEN; ++i){
#pragma acc loop independent
for (j=0; j<LEN; ++4j){
float sum=0;
for (1=0; I<LEN; ++1){
sum += a[i*LEN+]1]*b[IxLEN+j;

}
¢[1+LEN+j]=sum;

Listing 2: OpenCL matrix multiplication.

int main(){

bytes=(LEN*LEN)x*sizeof(float);

d_a=(voidx)clCreateBuffer(clctx, CL_LMEM_READ_WRITE,
bytes, NULL, &clerr);

d_b=(voidx*)clCreateBuffer(clctx, CL_LMEM_READ_WRITE,
bytes, NULL, &clerr);

d_c=(voidx)clCreateBuffer(clctx, CL_LMEM_READ_WRITE,
bytes, NULL, &clerr);

clEnqueueWriteBuffer(clemdqueue, (cLmem)d_a, CL_.TRUE,
0, bytes, a, 0, NULL, NULL);

clEnqueueWriteBuffer(clemdqueue, (cl.Lmem)d_b, CL_TRUE,
0, bytes, b, 0, NULL, NULL):
const charx kernelSource0 ="__kernel void\\
matrixMul(__global float * a,_global float * c,__global
float * b, int LEN){\\
int i=get_global_id(0);\\
int j=get_global id(1);\\
float sum = 0;\\
for(1 =0; 1 < LEN;14++) sum +=a i« LEN + 1] * b [l %
LEN + jJ\\
¢ [i * LEN + j] = sum;\\
1
clpgmO=clCreateProgramWithSource(clctx, 1,
&kernelSource0, NULL, &clerr);
clerr =clBuildProgram(clpgm0, 0, NULL, ” 7, NULL, NULL);
clkern0=clCreateKernel(clpgm0, "matrixMul”, &clerr);
clerr =clSetKernelArg(clkern0, 0, sizeof (cl.mem),
(voidx)&d_a);
clerr =clSetKernelArg(clkern0, 1, sizeof (cL.mem),
(voidx)&d_c);
clerr =clSetKernelArg(clkern0, 2, sizeof (cL.mem),
(void*)&d_b);
clerr =clSetKernel Arg(clkern0, 3, sizeof (int), (voidx)&LEN);
size_t clgridDim[2]={LEN,LEN};
size_t clblockDim[2]={16,16};
size_t cloffsets [2]={0,0};
uint clndims=2;
clerr =clEnqueueNDRangeKernel(clemdqueue, clkern0,
cIndims, cloffsets,
clgridDim, clblockDim, 0, NULL, NULL);
clEnqueueReadBuffer(clemdqueue, (cl.mem)d_c, CL_.TRUE, 0,
bytes, ¢, 0, NULL, NULL);

2.3 Matrix-Matrix Multiplication Example

Listing 1 and 2 illustrate a simple matrix-matrix multiplica-
tion in OpenACC and OpenCL, respectively. Ignoring the
directive lines, Listing 1 shows the baseline serial multipli-
cation of a and b, storing the result in ¢. Each matrix is
LEN*LEN in size. The outer loops iterated by i and j vari-
ables can be executed in parallel. Listing 1 shows how these
loops can be parallelized using OpenACC. In this code, ker-
nels directive marks a region intended to be executed on the
accelerator. loop directive guides the compiler to consider
the loop as a parallel work-sharing loop. Programmers can
control the parallelism using kernels and loop directives. As
an example of parallelism control, the independent clause is
used to force the compiler to parallelize the loop. This clause
overwrites the compiler’s auto-vectorization and loop depen-
dency checking. In Listing 1, data clauses hint the compiler
to copy a, b, and ¢ arrays from the host to the accelera-
tor, and copy them out from the accelerator to the host.
For each array, the [start:n] pair indicates that n elements
should be copied from the start element of array. Listing 2
shows how the parallelization can be exploited in OpenCL.
To simplify the illustration, we assume the OpenCL context
is created on the device and the pointer is stored in clctx.
We also assume a command queue is create in this context
and the pointer is stored in clemdqueue. kernelSource0 char-
acter pointer points to the string containing the declaration
of kernel code. Parallel threads execute the kernel and op-
erate on different matrix elements, based on their unique
indexes (i and j). Inside the host code, device memory is
allocated for a, b, and c, keeping the pointer in d_a, d_b,
and d_c, respectively. Then, input matrices are copied into



device memory. Then, a total of LEN*LEN light-weight
accelerator threads are launched on the device to execute
matrixMul kernel. After kernel completion, the resulting
matrix d_c is copied back to the host memory. As presented
in Listing 1, OpenACC significantly reduces the accelerator
programming effort in comparison to OpenCL. OpenACC
hides low-level accelerator-related code from the program-
mer, leaving the task to the compiler to generate low-level
code. Additionally, OpenACC provides a unified view over
both host and accelerator code, simplifying debugging and
development effort.

3. IPMACC FRAMEWORK

IPMACC is a research framework composed of a set of trans-
lators translating OpenACC applications to various acceler-
ator languages (e.g. OpenCL or CUDA). In addition to the
translators, IPMACC comes with a runtime library to sup-
port dynamic memory management operations in OpenACC
API. Our goal in designing IPMACC was to generate the
target source code (e.g. OpenCL) which is equivalent to the
OpenACC application. This has two advantages. Firstly,
this allows taking advantage of the latest innovations in the
target compilers (e.g. OpenCL runtime compilers) for ex-
ecuting OpenACC applications. Secondly, the programmer
can have an equivalent version of her serial code on accel-
erators by simply augmenting her code with OpenACC no-
tation. Later, experienced OpenCL or CUDA programmer
can perform further optimization on top of that, avoiding
development from scratch and saving huge amount of devel-
opment effort. To this end, we did our best to minimize ab-
straction and generate direct target source code. Currently,
IPMACC can translate OpenACC application two different
backends: OpenCL or CUDA. Both translators and runtime
library of IPMACC are developed flexible enough to allow
easy inclusion of more backends.

Structure. IPMACC framework has a command-line inter-
face for compiling an OpenACC application and generating
the destination binary. Compilation starts with validating
the OpenACC syntax used in the application. Then, the
OpenACC kernels and data regions are extracted from the
code to be translated to proper target (OpenCL or CUDA).
Then, several static passes parse the code to find dimensions
of the parallel loops, type and size of the data, user-defined
types, and user-defined procedure calls. After finding all
this information, the target source code will be generated.
Finally, the target source code is passed to the system com-
piler (g++ if the target is OpenCL or nvec if the target is
CUDA) to generate the final object code. The command-line
tool accepts all compilation flags that the system compiler
understands. Hence, the command-line tool can be used for
generating intermediate object codes or final binaries.

Features. IPMACC supports most of OpenACC procedure
calls and directives. Currently, all procedure calls except
synchronizations are supported. IPMACC supports kernels,
loop, data, enter, exit, and cache directives. parallel, de-
vice selection, and synchronization clauses are yet to be
implemented. IPMACC supports the use of user-defined
types and user-defined procedure calls in the kernels region.
Nested loops are supported and parallel iterations of each
loop nest is mapped to a unique dimension of the OpenCL
work-group (or CUDA thread-block). IPMACC is an open-

source framework and the code is available on github [25].

4. METHODOLOGY

Benchmarks. We use benchmarks from NVIDIDA GPU
Computing SDK [6] and Rodinia Benchmark Suit [1]. NVIDIA
GPU Computing SDK includes a large set of CUDA and
OpenCL test cases, each implementing a massively-parallel
body of an application in CUDA and OpenCL very effi-
ciently. Most test cases also include a serial C/C++ im-
plementation. We developed an OpenACC version of these
benchmarks over the serial C/C++ code. Rodinia is a GPGPU
benchmark suite composed of a wide set of workloads im-
plemented in C/C++. Originally, each of these benchmarks
was implemented in CUDA and OpenCL parallel models.
Recently, OpenACC implementation of the benchmarks has
been added by a third-party [10]. We include N-Body sim-
ulation from the SDK and the remaining benchmarks from
Rodinia.

OpenACC Compilers. We use our in-house framework,
IPMACC, for compiling OpenACC applications. The frame-
work and benchmarking suit can be obtained from github
[25]. IPMACC translates OpenACC to either CUDA or
OpenCL and executes OpenACC application over CUDA or
OpenCL runtime (e.g. NVIDIA GPUs or AMD GPUs). We
validated the correctness of our framework by comparing the
results of OpenACC benchmarks against the serial version.
For the last part of evaluations, we compare performance of
IPMACC to Omni OpenACC compiler [27].

Performance evaluations. We compile the OpenACC
version of benchmarks by our framework and run it over
CUDA and OpenCL runtime. We compare these to CUDA
and OpenCL implementations available in NVIDIA GPU
Computing SDK and Rodinia. In order to evaluate perfor-
mance, we report the total time of kernel execution and
memory transfer between host and accelerator. We use
nvprof for measuring these times in CUDA [7]. We also use
COMPUTE_PROFILE environment variable of CUDA run-
time to measure these times in OpenCL [8]. Every reported
number is the harmonic mean of 30 independent runs.

Platforms. We perform the evaluations under an OpenCL
and CUDA-capable accelerator. We use NVIDIA Tesla K20c
as the accelerator. This system uses NVIDIA CUDA 6.0 [6]
as the CUDA implementation backend and NVIDIA OpenCL
1.1 as the OpenCL implementation backend. The other
specifications of this system are as follows: CPU: Intel®
Xeon® CPU E5-2620, RAM: 16 GB, and operating system:
Scientific Linux release 6.5 (Carbon) x86_64. We use GNU
GCC 4.4.7 for compiling C/C++ files.

S. EXPERIMENTAL RESULTS

In this section, we evaluate performance of IPMACC under
various aspects. First, we compare a set of OpenACC appli-
cations to their highly optimized OpenCL/CUDA version.
Our goal is to identify OpenACC’s programming limitations
resulting in the performance gap between OpenACC and
OpenCL performance. Second, we compare the execution
time of various OpenACC operations under OpenCL and
CUDA backends of IPMACC. Finally, we compare perfor-
mance of IPMACC to a previous open-source compiler.
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Figure 1: Comparing the execution time of OpenACC with
OpenCL or CUDA backend to highly-optimized (a) OpenCL
or (b) CUDA implementations. Each bar shows the duration
of time that the application spends on memory transfer and
kernel execution.

5.1 Standard Benchmarks

Figure 1 reports the execution time for OpenACC appli-
cations, compared to their OpenCL (1la) and CUDA (1b)
versions. The figure reports the breakdown of time spent on
the accelerator; kernel execution (kernel) or memory trans-
fer between host and accelerator (memory). Same trend can
be seen under both CUDA and OpenCL. In interest of space,
below we limit the discussion to OpenCL implementations.

In most cases, OpenCL’s kernel execution portion is shorter
than OpenACC. Also, memory transfer times are compara-
ble on both OpenCL and OpenACC. There are exceptions
where OpenACC memory transfers are faster (e.g. BFS).
Below we investigate the differences between OpenCL and
OpenACC. We discuss applications separately providing in-
sight into why OpenCL and OpenACC implementations pre-
sented in Figure 1 have different kernel execution and mem-
ory transfer times.

BFS. BFS visits all the nodes in the graph and computes
the visiting cost of each node. Each node is visited only
once. Parallel threads of a kernel visit the nodes belonging
to the same graph depth concurrently and the algorithm
traverses through the depth iteratively. The operation stops
once there is no child to visit.

Compared to the OpenCL version, the OpenACC version
of BFS spends less time on memory transfers. This can be
explained by the fact that the OpenACC version performs
data initializations on the GPU. However, the OpenCL ver-
sion initializes the inputs on the host and transfers the in-
puts to GPU. Compared to the OpenCL version, OpenACC
spends more time on kernel execution, since it forces a debil-
itating reduction on a global variable. The global variable is
a boolean indicating whether there remains more nodes to
visit or not. OpenCL avoids global reduction by initializing
the variable to FALSE on the host and imposing a control-
flow divergent in the kernel to guard the global variable from
FALSE writes (allowing TRUE writes).

Hotspot. Hotspot simulates chip characteristics to model
the temperature of individual units. At every iteration, the
algorithm reads the temperature and power consumption
of each unit and calculates new temperatures. Compared
to OpenACC, the OpenCL implementation spends the less
amount of time on memory transfers and kernel execution.

We explain the faster memory transfers by the memory flags
used in clCreateBuffer in the OpenCL version. The OpenCL

version creates device buffers using CL_MEM_USE_HOST_PTR

flag, avoiding explicit memory transfer API calls. We found

that NVIDIA OpenCL implementation performs much faster

memory transfers when CL_LMEM_USE_HOST_PTR is used'.
Comparing Hotspot in Figure 1a and 1b also reveals that the

memory transfers of the Hotspot OpenCL version is even

faster than the CUDA version®.

We explain faster kernel execution by the ghost zone op-
timization [4] used in the OpenCL version. In Hotspot,
the temperature of each unit depends on its power con-
sumption and neighbors’ temperatures. OpenCL kernel ex-
ploits this behavior to localize the communication and re-
duce global memory accesses as follows. In OpenCL, threads
of the same work-group calculate the temperature of neigh-
bor units. The OpenCL version updates the new tempera-
ture of neighbor units using the threads of the same work-
group locally. This local communication reduces the num-
ber of kernel launches used to synchronize the tempera-
ture across all work-groups, explaining why the OpenCL
version comes with shorter execution time. In OpenACC,
unlike OpenCL, the software-managed cache cannot be ex-
ploited for local communication. Hence, In OpenACC there
are higher number of global synchronizations and kernel
launches, which in turn harms performance.

N-Body simulation. N-Body models a system of particles
under the influence of gravity force. In each timestep, oper-
ations of O(N?) complexity are performed (for a system of
N particles) to calculate forces between all pairs of particles.
Inherently, there are many redundant memory reads, since
the mass and position information of each particle is fetched
by other particles N-1 times to calculate its interaction with

"We derived a dedicated test case to make sure this flag is
the only cause to faster memory transfers in OpenCL.
2Notice that using aforementioned flag in the OpenCL back-
end of OpenACC my harm application semantic. Because
automatic update of host or accelerator memory can override
the logic of copyin/copyout clauses used by the OpenACC
programmer.



other particles.

While both OpenCL and OpenACC memory transfers take
about the same time, OpenCL kernels are much faster. The
OpenCL version tiles the computations to reduce redundant
memory reads [9]. OpenCL exploits local memory to share
the particles among all threads of a work-group. In Ope-
nACC, however, the redundant memory accesses are not
filtered out by the software-managed cache. As reported,
redundant memory accesses can degrade performance sig-
nificantly.

Needleman-Wunsch. Needleman-Wunsch is a sequence

alignment algorithm used in bioinformatics. In either OpenCL

or OpenACC, this application traverses a 2D matrix and
updates the costs. Upon updating a new cost, four memory
locations are read and one location is written.

Although both OpenCL and OpenACC versions spend the
same amount of time on memory transfers, OpenCL kernel
launch/executions are much faster than OpenACC kernels.
The OpenCL version fetches a data chunk of costs matrix
into shared memory and traverses the matrix at the shared
memory bandwidth. This mechanism comes with three ad-
vantages: 1) filtering redundant global memory accesses by
local memory, ii) minimizing global communication by shar-
ing intermediate results stored in the local memory, iii) re-
ducing the number of kernel launches and global communi-
cations. The fewer number of kernel launches explains why
the kernel time of OpenCL is much lower than OpenACC.

Pathfinder. In Pathfinder kernel, every working element
iteratively finds the minimum of three consequent elements
in an array. The OpenCL version of Pathfinder performs two
optimizations: i) finding the minimum by accessing the data
from local memory, and ii) sharing the updated minimum
locally among neighbor threads for certain iterations and
then reflecting the changes globally to other threads. Such
local communications reduce the number of global synchro-
nizations and kernel launches.

However, OpenACC’s API is not flexible enough to allow
the programmer exploit the local memory in a similar way.
Therefore neighbor threads in the OpenACC version do not

communicate via local memory. Therefore, each thread fetches

the same data multiple times and threads communicate only
through global memory. Communication through global
memory is implemented through consequent kernel launches.

We explain the faster memory transfers in the OpenCL ver-
sion in the same way that we explained Hotspot. The OpenCL

version uses CL_LMEM_USE_HOST_PTR during creating mem-

ory buffers.

Speckle reducing anisotropic diffusion. Speckle re-
ducing anisotropic diffusion (SRAD) is an image process-
ing benchmark performing noise reduction through partial
differential equations iteratively. Compared to OpenCL,
the kernel time of OpenACC version is slightly lower (this
difference is more obvious in Figure 1b, comparing Ope-
nACC and CUDA). Three code blocks construct the com-
putation iterative body of this benchmark: one reduction
region and two data parallel computations. Our evalua-

tion shows OpenACC version performs 22% slower than
OpenCL, upon executing two data parallel computations.
However, OpenACC outperforms OpenCL in executing the
reduction portion. This is explained by the difference in
reduction implementations. First, the OpenCL implemen-
tation launches two kernels to reduce two variables, while
the OpenACC version performs these two reductions in one
kernel region. Second, our OpenACC framework performs
the reduction in two levels: reducing along work-items of
work-group on GPU and reducing along work-groups on
CPU. In the OpenCL version, however, reduction is per-
formed by multiple serial kernel launches, all on the GPU.
The OpenACC version spends less time on executing the ker-
nel as part of the computation is carried on host. Meanwhile,
performing two levels of reduction imposes the overhead of
copying intermediate data from GPU to CPU. This explains
why the OpenACC version spends slightly more time on
memory transfers and less time on kernel launch/execution.

5.2 OpenACC Benchmarking

Figure 2 compares performance of IPMACC backends (OpenCL

and CUDA) under various OpenACC operations. These
operations include copying data from host to accelerator
(copyin), copying data from accelerator to host (copyout),
reducing writes from parallel threads by maximum (reduc-
tion (maz)) and sum (reduction (+)) operators, and kernel
launch overhead. To perform this experiment, we measure
the time for completing one of these operations (e.g. data
directive with copyin clause or kernels loop directive with re-
duction clause). The directive is called within a sequential
loop which iterates for 30 times. We report the harmonic
mean of these 30 iterations. The OpenACC benchmarking
suit that we use here is included in the IPMACC package
[25].

copyin and copyout. OpenCL and CUDA backend per-
form similar under copyin clause. For copyout clause, OpenCL
performs slightly faster under larger data sizes.

reduction (max) and reduction (4). IPMACC imple-
ments a two-level reduction algorithm; first, reducing the
values within the work-group on the accelerator, then, re-
ducing the results of all work-groups on the host. It is in-
troduced by Mark Hariss in [2]. Under both OpenCL and
CUDA, reduction time starts to grow remarkably after 59K
values. Reduction (max) performs slower than reduction
(4) under both OpenCL and CUDA, since finding the max-
imum causes branch divergence. Comparing OpenCL and
CUDA backends, CUDA backend performs slightly faster
under both types of reduction.

kernel launch. We measure the time taking to launch and
execute a kernel with different number of arguments; ranging
from one to 16 arguments. To make sure that the compiler is
not optimizing the code by removing the kernel arguments,
within the kernels region we sum the value of all arguments
and write the result back to global memory. Under both
OpenCL and CUDA, increasing the number of arguments
increases the measured latency. Part of this increase comes
from the launch and portion of the increase comes from the
increase in the number of sum operations in the kernel. It
is not possible to separate these two by OpenACC control.
Comparing OpenCL and CUDA, OpenCL kernels perform
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4% to 8% slower than CUDA.

5.3 Compiler Performance

In this Section, we compare our framework work to Omni
OpenACC compiler [27]. We compare the performance of
the code generated by Omni and IPMACC under three ba-
sic workloads; matrix-matrix multiplication, vector-vector
add, and reduction. Our goal is to compare loop-to-thread
mapping, overhead of generated code, and efficiency of re-
duction. Since Omni is only able to run the application over
CUDA, here we limit the comparison to CUDA back end of
IPMACC.

Matrix-matrix Multiplication. This benchmark consists
of three nested loops. The most inner loop is a reduction.
Two outer loops can be executed independently in parallel.
In this comparison, we parallelize the two outer loops. Fig-
ure 3 compares the performance of this implementation com-
piled by IPMACC or Omni. As reported, under small prob-
lem size, IPMACC performs faster and under larger problem
sizes, Omni performs faster. We explain this by the mapping
of the two nested loops to CUDA threads and thread blocks.
IPMACC maps each loop nest along one dimension of the
grid. This means IPMACC launches as parallel threads as
the number of parallel loop iterations. Omni, however, maps
all loops to one single-dimensional grid. Omni maps the first
loop across the thread blocks and the second loop across the
threads of the thread blocks. Since the number of threads
per thread block is limited by an small number (e.g. 1024),
Omni also limits the number of parallel threads which are
launched for executing the second loop. Accordingly, more
than one loop iteration (or task) is mapped to each thread.
Below we discuss when it is advantageous and when it is not.

Omni’s mapping reduces the number of threads and thread
blocks. This is advantageous over IPMACC’s mapping when
there are large number of parallel iterations, as we see under

256 x 256 and 1024 x 1024 problem sizes in Figure 3. This
is because Omni’s mapping reduces the overhead of schedul-
ing large number of threads and thread blocks. On the other
hand, assigning more than one task to threads and thread
blocks comes with an overhead. This overhead includes con-
trol statements for the two loops, assigning more than one
job (or one loop iteration) to threads and thread blocks. As
we see under 16 x 16 problem size in Figure 3, this overhead
causes Omni to stay behind IPMACC.

We also found that for different problem sizes, Omni always
generates a loop to assign more than one job to each thread
block. In our experiments, however, this loop only assigns
one job to each thread. Hence, the generation of this loop
essentially imposes a control flow overhead and reduces the
performance. To clarify and show this overhead, we change
the matrix-matrix multiplication implementation and merge
and flatten the two outer loops into single unified loop. Fig-
ure 4 reports the numbers under the latter implementation.
In this case, both compilers generate a code with the same
mapping of loops to threads. The difference is an extra loop
that Omni generates to assign more than one task to each
thread (while always assigning one task to each thread). As
reported, in this implementation, IPMACC performs faster
than Omni.

Vector-vector Addition. This benchmark adds two input
arrays, element by element, and stores the output in another
array. Each individual sum can be performed in parallel.
Figure 5 compares the performance of vector add under IP-
MACC and Omni. As reported, IPMACC performs faster
than Omni. We explain this by the code generated by the
two compilers. IPMACC generates a control statement to
control number of active threads. Omni, however, generates
a loop to control the number of loop iterations assigned to
each thread (assigning more than one task to each thread).
The generation of this loop is an extra computation on GPU
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Figure 3: Comparing the performance of IPMACC and
Omni under matrix-matrix multiplication workload. Each
bar shows the duration of time that the application spends
on memory transfer and kernel execution. Each bar group
reports for particular problem size.
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Figure 4: Comparing the performance of IPMACC and
Omni under a matrix-matrix multiplication which two outer
loops are merged and flattened. Each bar shows the dura-
tion of time that the application spends on memory transfer
and kernel execution. Each bar group reports for particular
problem size.

since the runtime profiling indicates Omni launches enough
number of threads and assigns one task to each thread.

Reduction. Figure 6 compares the performance OpenACC
reduction clause under IPMACC and Omni. Since our im-
plementation reduces the results of thread blocks on the
host, we measure the time taking to complete the whole
kernels region (before kernels region starts and after it com-
pletes). As reported, Omni implementation of reduction is
much faster than IPMACC.

6. RELATED WORK

Reyes et al. [11] introduce an open-source tool, named ac-
cULL, to execute OpenACC applications on accelerators.
The tool consists of a source to source compiler and a run-
time library. The compiler translates OpenACC notations
to the runtime library routines. The runtime library rou-
tines are implemented in both CUDA and OpenCL. Tian et
al. [12] introduce an OpenACC implementation integrated
in OpenUH [3]. They evaluate the impact of mapping loop
iterations over GPU parallel work-items.

Hoshino et al. [23] investigate the impact of memory lay-
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Figure 5: Comparing the performance of IPMACC and
Omni under vector-vector addition. Each bar shows the
duration of time that the application spends on memory
transfer and kernel execution. Each bar group reports for
particular problem size.
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Figure 6: Comparing the performance of IPMACC and
Omni under reduction clause. Each bar shows the dura-
tion of time that the application spends to complete whole
reduction. Each bar group reports for particular problem
size.

out on the performance of NVIDIA Kepler, Intel XeonPhi,
and Intel Xeon processors, under directive-based program-
ming languages. They found that having structure-of-arrays
is much more efficient than array-of-structures under Kepler
and XeonPhi, while it has minor impact on the performance
of Xeon. They explain this by the relatively smaller cache
used by Kepler ( 110 Bytes per hardware thread) and Xeon-
Phi (128 KBytes per hardware thread), compared to Xeon
(1048 KBytes per hardware thread).

Herdman et al. [21] compare performance of ’parallel’ and
’kernels’ constructs under various vendor implementations of
OpenACC. They found that most vendors focus on one of
these constructs. Comparing quickest construct of the ven-
dors, their performance variations found to be below 13%.
They also found 15% to 20% gap between OpenACC and
CUDA on NVIDIA GPUs.

Nakao et al. [5] introduce XACC as an alternative to MPI
+ OpenACC programming model to harness the processing
power of cluster of accelerators. XACC offers higher pro-
ductivity since XACC abstractions reduce the programming
efforts. Under small and medium problem sizes, XACC per-
forms up to 2.7 times faster than MPI 4+ OpenACC. This



higher performance comes from the PEACH2 interface that
XACC communicates through. PEACH2 performs faster
than GPUDirect RDMA over InfiniBand under data trans-
fer size of below 256KB. Increasing the problem size, XACC
and MPI + OpenACC perform comparable, since the la-
tency of PEACH2 and GPUDirect RDMA over InfiniBand
would be equal.

Murai et al. [14] propose an extension to OpenACC to fa-
cilitate multi-accelerator processing. Language extension in-
cludes on_device clause for data, kernels, and loop directives.

Xu et al. [15] evaluate the performance of Kirchhof Migra-
tion under OpenACC. They found OpenACC code executed
on the GPU is 20.54X faster than the code executed on single
10-core CPU. They also found that gang serialization may
degrade performance significantly. Instead of serialization
and broadcast, they suggest to perform the computations
redundantly.

Kraus et al. [16] investigated the opportunity to improve the
performance of CFD workloads through OpenACC. They
applied several CUDA-like optimizations at the OpenACC
level, including texture cache and occupancy optimizations.
They apply texture memory optimization by declaring vari-
ables as constant. They alter the streaming multiproces-
sor’s occupancy by specifying vector_length (or thread-block
size). They found that the optimal occupancy is the point
with higher cache hit rate, since the CFD workloads tend to
work on large working sets. They also transform array-of-
structures to structure-of-arrays to optimize memory layout
(returned nearly 52% performance improvement).

Govett et al. [17] compare the performance of three differ-
ent OpenACC implementations under NIM workload. They
perform three optimizations in their own implementation,
called F2C-ACC. Among these optimizations, they found

that variable demotion can improve performance significantly.

Variable demotion avoids transferring of the entire dimen-
sion of array when only certain indecies are accessed. This
can decrease the memory transfer time and also allow gen-
eration of more efficient kernel code. For instance, variable
demotion on a 1D array, where possible, can replace global
memory array accesses with scalar or register accesses.

Wienke et al. [18] compare the performance and develop-
ment cost of two OpenACC applications to their OpenCL
equivalent. In terms of modified code lines, they found Ope-
nACC demands 6.5X lower development effort compared to
OpenCL. Meanwhile, they found the best-effort performance
gap is of 2.5X. They observed that the OpenACC inflexibil-
ity in exploiting software-managed cache causes this large
performance gap. Williams et al. [20] study different ap-
plications to evaluate the performance gap between Ope-
nACC and CUDA implementations. Niemeyer and Sung
[22] investigate the OpenACC and CUDA performance in
CFD applications. They show that the performance gap be-
tween OpenACC and CUDA narrows down to a negligible
value for large data sets. Herdman et al. [21] compare the
performance and programming productivity of OpenACC,
OpenCL, and CUDA. Under hydorodynamics applications,
they found that OpenACC outperforms CUDA and OpenCL
on average by 1.35X and 1.24X, respectively. In term of

words of code, they conclude OpenACC applications are
11.9X and 8.67X more productive for programming than
OpenCL and CUDA, respectively. Additionally, they found
OpenACC applications easier to debug and verify, compared
to CUDA and OpenCL.

Tabuchi et al. [27] introduce a source-to-source compiler for
translating OpenACC applications to CUDA. They have in-
cluded their translator in Omni compiler [26]. They compare
the performance of their compiler to Cray GPU compiler
under three different benchmarks. They report speedups of
0.74 to 2.1 times over the Cray compiler. They found that
relying on the NVIDIA compiler for generating the accelera-
tor code is the reason why their compiler outperforms Cray
compiler. They also compare the performance of OpenACC
versions of the applications to hand-optimized CUDA ver-
sions.

7. CONCLUSION

In this paper, we introduced IPMACC, a framework for
source-to-source translation of OpenACC for C applications
to OpenCL and CUDA. We verified the correctness of our
framework under various benchmarks. We also investigated
the performance gap between OpenACC and highly-optimized
OpenCL versions of the benchmarks. We also introduced a
benchmarking suit to measure the time overhead of various
OpenACC operations, including copyin and reduction. We
also compared the performance of our framework to Omni
OpenACC compiler.

We found that there would be a huge gap between the perfor-
mance of OpenACC and OpenCL implementations once the
OpenCL version is optimized to exploit software-managed
cache. By comparing IPMACC to Omni compiler, we also
found that the performance of OpenACC applications can
be highly affected by the decision of compiler in mapping
loop iterations to work-items or threads.
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