
IPMACC: Translating OpenACC API to OpenCL

Ahmad Lashgar
ECE Department

University of Victoria
lashgar@uvic.ca

Alireza Majidi
Department of Computer
Science and Engineering

Texas A&M University
a.majidi@tamu.edu

Amirali Baniasadi
ECE Department

University of Victoria
amiralib@ece.uvic.ca

ABSTRACT
In this paper, we introduce IPMACC a framework for exe-
cuting OpenACC for C applications over OpenCL runtime.
We use our framework to compare performance of OpenACC
and OpenCL. OpenACC API abstractions remove the low-
level control from programmers’ hand. To understand the
low-level OpenCL optimizations that are not applicable in
OpenACC, we compare highly-optimized OpenCL and Ope-
nACC versions of a wide set of benchmarks. We show that
under the investigated benchmarks, exploiting scratchpad
memory as a fast-communication link is the most important
optimization that is not applicable in OpenACC.

1. INTRODUCTION
In spite of the prevalence of OpenCL support on various
platforms, OpenCL development effort is still non-trivial.
In this paper, we introduce IPMACC as a framework for
executing OpenACC for C applications over OpenCL run-
time. IPMACC comes with a set of translators to generate
an OpenCL code which is equivalent to the OpenACC code.
This offloads the programmer from tedious OpenCL pro-
gramming efforts. Instead, the OpenCL programmer can
spend time on optimizing the code generated by IPMACC.
We investigate the reason behind the gap between the Ope-
nACC implementation and the highly optimized OpenCL
implementation of the benchmarks. Our goal is to iden-
tify key bottlenecks in the OpenACC programming model.
We show that OpenCL optimizations in using the software-
managed cache is the main reason behind the huge gap be-
tween OpenACC and OpenCL. We also show that reduction
operations in OpenACC contribute to this gap too.

2. IPMACC FRAMEWORK
IPMACC is a research framework composed of a set of trans-
lators translating OpenACC applications to various acceler-
ator languages (e.g. OpenCL or CUDA). In addition to the
translators, IPMACC comes with a runtime library to sup-
port dynamic memory management operations in OpenACC

API. Our goal in designing IPMACC is to generate the tar-
get source code (e.g. OpenCL) which is equivalent to the
OpenACC application. This has two advantages. Firstly, it
allows taking advantage of the latest innovations in the tar-
get compilers (e.g. OpenCL runtime compilers) for execut-
ing OpenACC applications. Secondly, the programmer can
have an equivalent version of her serial code on accelerators
by simply augmenting her code with OpenACC notation.
Later, the experienced OpenCL programmer can perform
further optimizations on top of that, avoiding development
from scratch and saving huge amount of development effort.
To this end, we did our best to minimize abstraction and
generate direct target source code. Currently, IPMACC can
translate OpenACC applications to two different backends:
OpenCL or CUDA. Both translators and runtime library of
IPMACC are developed flexible enough to allow easy inclu-
sion of more backends.

IPMACC supports most of OpenACC procedure calls and
directives. Currently, all procedure calls except synchro-
nizations are supported. IPMACC supports kernels, loop,
data, enter, exit, and cache directives. Parallel, device selec-
tion, and synchronization clauses are yet to be implemented.
IPMACC supports the use of user-defined types and user-
defined procedure calls in the kernels region. Nested loops
are supported and parallel iterations of each loop nest is
mapped to a unique dimension of the OpenCL work-group.

3. METHODOLOGY
We use benchmarks developed by the third-party imple-
menting Rodinia Benchmark Suit in OpenACC [2]. We use
our in-house framework, IPMACC, for compiling OpenACC
applications. IPMACC and the benchmarking suit can be
obtained from github (http://github.com/lashgar/ipmacc/).
The key deference between IPMACC and previous work ([3],
[4], [5], [1]) is that IPMACC has very low abstraction in
translations and generates a single file as the target source
code. Also IPMACC translates OpenACC to both CUDA
and OpenCL.

In order to evaluate performance, we report the total time
of kernel execution and memory transfer between the host
and the accelerator. We use COMPUTE PROFILE envi-
ronment variable of CUDA runtime to measure these times
in OpenCL. Every reported number is the harmonic mean
of 30 independent runs. We perform the evaluations un-
der NVIDIA Tesla K20c, the OpenCL and CUDA-capable
accelerator.



O
pe

nA
C

C

O
pe

nC
L

O
pe

nA
C

C

O
pe

nC
L

O
pe

nA
C

C

O
pe

nC
L

0
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e Memory transfer Kernel execution

Hotspot Needle-Wunsch Pathfinder

Figure 1: Comparing the execution time of OpenACC with
OpenCL backend to highly-optimized OpenCL implementa-
tions. Each bar shows the duration of time that the appli-
cation spends on memory transfer and kernel execution.

4. EXPERIMENTAL RESULTS
Figure 1 reports the execution time for OpenACC applica-
tions, compared to their OpenCL versions. The figure re-
ports the breakdown of time spent on the accelerator; kernel
execution (kernel) or memory transfer between host and ac-
celerator (memory). Below we investigate individual bench-
marks.

Hotspot. Hotspot simulates chip characteristics to model
the temperature of individual units. At every iteration, the
algorithm reads the temperature and power consumption of
each unit and calculates new temperatures. Compared to
OpenACC, the OpenCL implementation spends less time
on memory transfers and kernel execution.

We explain the faster memory transfers by the memory flags
used in clCreateBuffer in the OpenCL version. The OpenCL
version creates device buffers using CL MEM USE HOST PTR
flag, avoiding explicit memory transfer API calls. We found
that NVIDIA OpenCL implementation performs much faster
memory transfers when CL MEM USE HOST PTR is used.

We explain faster kernel execution by the ghost zone op-
timization used in the OpenCL version. In Hotspot, the
temperature of each unit depends on its power consump-
tion and neighbours’ temperatures. OpenCL kernel exploits
this behaviour to localize the communication and reduce
global memory accesses as follows. In OpenCL, threads of
the same work-group calculate the temperature of neighbour
units. The OpenCL version updates the new temperature of
neighbour units using the threads of the same work-group
locally. This local communication reduces the number of
kernel launches used to synchronize the temperature across
all work-groups, explaining why the OpenCL version comes
with shorter execution time. In OpenACC, unlike OpenCL,
software-managed cache cannot be exploited for local com-
munication. Hence, In OpenACC there are higher number of
global synchronizations and kernel launches, which in turn
harms performance.

Needleman-Wunsch. Needleman-Wunsch is a sequence
alignment algorithm used in bioinformatics. In either OpenCL
or OpenACC, this application traverses a 2D matrix and
updates the costs. Upon updating a new cost, four memory

locations are read and one location is written.

Although both OpenCL and OpenACC versions spend the
same amount of time on memory transfers, OpenCL kernel
launch/executions are much faster than OpenACC kernels.
The OpenCL version fetches a data chunk of costs matrix
into shared memory and traverses the matrix at the shared
memory bandwidth. This mechanism comes with three ad-
vantages: i) filtering redundant global memory accesses by
local memory, ii) minimizing global communication by shar-
ing intermediate results stored in the local memory, iii) re-
ducing the number of kernel launches and global communi-
cations. The fewer number of kernel launches explains why
the kernel time of OpenCL is much less than OpenACC.

Pathfinder. In Pathfinder kernel, every working element
iteratively finds the minimum of three consequent elements
in an array. The OpenCL version of Pathfinder performs two
optimizations: i) finding the minimum by accessing the data
from local memory, and ii) sharing the updated minimum
locally among neighbour threads for certain iterations and
then reflecting the changes globally to other threads. Such
local communications reduce the number of global synchro-
nizations and kernel launches.

However, OpenACC’s API is not flexible enough to allow
the programmer exploit the local memory in a similar way.
Therefore neighbour threads in the OpenACC version do not
communicate via local memory. Accordingly, each thread
fetches the same data multiple times and threads communi-
cate only through global memory. Communication through
global memory is implemented through consequent kernel
launches.

We explain the faster memory transfers in the OpenCL ver-
sion in the same way that we explained Hotspot. The OpenCL
version uses CL MEM USE HOST PTR during creating mem-
ory buffers.

5. CONCLUSION
In this paper, we introduced IPMACC, a framework for
source-to-source translation of OpenACC for C applications
to OpenCL. We verified the correctness of our framework
under various benchmarks. We also investigated the perfor-
mance gap between OpenACC and highly-optimized OpenCL
versions of the benchmarks. We found that there will be a
huge gap between the performance of OpenACC and OpenCL
implementations once the OpenCL version is optimized to
exploit software-managed cache.

6. REFERENCES
[1] C. Liao et al., OpenUH: an optimizing, portable

openmp compiler, Concurrency and Computation:
Practice and Experience, vol. 19, no. 18, 2007.

[2] PathScale. Modified rodinia benchmark suite, 2013.
Available: https://github.com/pathscale/rodinia

[3] R. Reyes et al., accULL: An openacc implementation
with CUDA and opencl support, Euro-Par 2012.

[4] X. Tian et al. Compiling a High-level Directive-Based
Programming Model for GPGPUs. LCPC 2013.

[5] A. Tabuchi et al. A Source-to-Source OpenACC
compiler for CUDA. HeteroPar 2013.


