
A Case Study in Reverse Engineering GPGPUs:
Outstanding Memory Handling Resources

Ahmad Lashgar
ECE Department

University of Victoria

lashgar@uvic.ca

Ebad Salehi
ECE Department

University of Victoria

ebads67@uvic.ca

Amirali Baniasadi
ECE Department

University of Victoria

amiralib@ece.uvic.ca

ABSTRACT
During recent years, GPU micro-architectures have changed
dramatically, evolving into powerful many-core deep-multi-
threaded platforms for parallel workloads. While important
micro-architectural modifications continue to appear in ev-
ery new generation of these processors, unfortunately, lit-
tle is known about the details of these innovative designs.
One of the key questions in understanding GPUs is how
they deal with outstanding memory misses. Our goal in
this study is to find answers to this question. To this end,
we develop a set of micro-benchmarks in CUDA to under-
stand the outstanding memory requests handling resources.
Particularly, we study two NVIDIA GPGPUs (Fermi and
Kepler) and estimate their capability in handling outstand-
ing memory requests. We show that Kepler can issue nearly
32X higher number of outstanding memory requests, com-
pared to Fermi. We explain this enhancement by Kepler’s
architectural modifications in outstanding memory request
handling resources.

1. INTRODUCTION
GPGPUs have evolved into energy-efficient platforms for

executing massively-multithreaded OpenCL / CUDA work-
loads mainly as the result of innovative designs employed
in their micro-architecture. Information for understanding
new micro-architectures are limited to few white papers from
manufacturers, which mostly explain a high-level view of
the design. Previous studies [10, 11, 1], however, have in-
troduced various micro-benchmarking solutions, successfully
revealing few micro-architectural details.

In this study we extend previous studies and use micro-
benchmarks to reverse engineer GPGPUs and analyze their
capabilities in managing outstanding memory requests. First,
we give an overview of two alternative architectural designs
for handling outstanding memory requests in GPGPUs (Sec-
tion 2). One design is based on the Miss Status/Information
Holding Register (MSHR) structure, initially proposed for
CPUs [3]. The other design, named Pending Request Ta-
ble (PRT) is used specifically by many-thread GPUs [7].
Second, we investigate two different GPUs and report their
approach to handling outstanding memory requests (Section
3). Finally, after identifying the employed approach, we ex-
tend our micro-benchmarking to understand design details
(Section 5).

This work was presented in part at the international symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART2015)
Boston, MA, USA, June 1-2, 2015.

Our micro-benchmarks rely on issuing a certain number
of memory requests and measure the number of core clock
ticks taking to complete the requests. The measured latency
increases as we increase the number of memory requests.
Observing the variations in this latency, we assume that a
significant increase indicates a micro-architectural limitation
in booking outstanding memory requests.

In summary, we make the following contributions:

• We develop micro-benchmarks to stress outstanding
memory requests handling resources. The developed
micro-benchmarks can be configured to generate dif-
ferent memory patterns, stressing various aspects of
the resources.

• We run our micro-benchmarks on two GPGPUs which
have different micro-architectures. We show that un-
der Fermi architecture the maximum number of out-
standing memory accesses is limited by the number
of uncoalesced accesses. We also show that under Ke-
pler architecture the maximum number of outstanding
memory accesses is limited by the number of memory
instructions that a warp can execute.

• We show that each SM in Fermi GPGPU can issue
up to 128 concurrent memory requests to DRAM. We
also show that this number is much greater in Kepler
GPGPU, nearly 1408 requests. We present the micro-
architectural design that can explain this huge change.

2. BACKGROUND
In this study we focus on NVIDIA Tesla M2070 and Tesla

K20 GPGPUs. Tesla M2070 and Tesla K20 are based on
Fermi [9] and Kepler architectures [6], respectively. Ke-
pler, the recent architecture, differs from Fermi in various
aspects; namely the number of Streaming Multiprocessors
(SM), warps per SM, and SIMD engines per SM. In both
architectures, there are 32 threads in a warp. Threads of
the warp execute one common instruction at a time, referred
to as warp instruction. Threads of the warp are executed
in lock-step SIMD-like style and are synchronized at every
instruction. Both architectures have two levels of cache hi-
erarchy for data. We assume that the cache hierarchy is
not blocking and can handle multiple outstanding memory
requests concurrently. This is achieved mainly by using out-
standing memory request handling resources. Since L2 cache
is backing multiple L1 caches from different SMs, we assume
that the L2 cache is richer than L1 in terms of outstanding
memory request handling resources. Hence, during micro-
benchmarking a single SM, the outstanding memory request

handling resources at the L1 cache side will be the bottle-
neck as these resources saturate before the saturation of out-
standing memory request handling resources at the L2 cache
side.

We assume two possible designs for the organization of
outstanding memory request handling resources at the SM
or L1 cache side. Below we overview these two designs.

2.1 Miss Status Handling Registers
The Miss Status/Information Holding Registers (MSHR)

structure is assumed in GPGPU-sim v3.2.2 [2] for model-
ing outstanding memory request handling resources. In this
design, each SM has a certain number of MSHRs. Each
MSHR tracks one pending memory request, fetching a mem-
ory block equal to the cache line size.

Upon executing a memory instruction for a warp, the
Load/Store unit coalesces memory accesses of threads into
memory blocks. For each coalesced access, one MSHR en-
try is booked and one memory request is issued. Each
MSHR entry can also be shared among a certain number of
threads, avoiding redundant MSHR allocations. The num-
ber of threads/warps that can share a common MSHR varies
from GPU to GPU, impacting the capability of GPU in deal-
ing with outstanding memory requests. Also the address off-
set (within the requested memory block) is stored for each
of the threads merged in the same MSHR entry.

Once a reply is received from the lower memory level
(L2 cache in this case), the requested data and identifier
of MSHR are extracted from the reply. For the thread iden-
tifiers marked in the corresponding MSHR entry, the Load-
/Store unit writes the fetched data into the private registers
of the threads. The Load/Store unit releases the MSHR en-
try after completing this process. An operation example is
illustrated in [4].

In this design, the number of outstanding memory re-
quests depends on the number of available MSHRs. Accord-
ingly, the SM may stall a warp once there is no free MSHR
available. Since each MSHR has limited capability in merg-
ing redundant memory requests, it is important that the
programmer develops programs that perform well-coalesced
accesses to avoid such stalls.

2.2 Pending Request Table
The Pending Request Table (PRT) structure is introduced

in [7]. PRT has a certain number of entries and each entry
tracks one memory instruction per warp (memory instruc-
tions include load and store instructions from DRAM.)

Upon executing a memory instruction for a warp, only one
PRT entry is reserved (if there is a memory miss). Before
booking information in this entry, the Load/Store unit coa-
lesces memory accesses of the threads into memory blocks.
For each coalesced access, the Load/Store unit creates one
memory request to fetch the data from the lower memory
level. In the memory request packet, the Load/Store unit
stores the address of the requested block, the identifier of
assigned PRT entry, and the mask of threads needing this
block. Then, the Load/Store unit sends this memory request
to the lower memory level. In the PRT entry, the Load/S-
tore unit stores the number of pending memory requests. It
also stores the memory address offset (within the requested
memory block) for each thread.

Once a reply is received from the lower memory level,
the requested data, the identifier of PRT entry, the address

of requested memory block, and the mask of threads are
extracted from the reply. Based on the offsets recorded in
the corresponding PRT entry, the Load/Store unit serves the
memory instruction and stores the fetched data into private
registers of the threads marked in the mask. The PRT entry
is released upon completion of all memory requests. An
example is illustrated in [7].

The number of outstanding memory requests is indepen-
dent of the number of uncoalesced memory accesses. Since
the entire memory accesses of a warp (including coalesced
and uncoalesced accesses) are stored in just one PRT entry,
the number of outstanding memory instructions is limited
by the number of load/store instructions executed by warps.
Essentially, the number of PRT entries specifies the number
of warp memory instructions that can be executed concur-
rently.

3. MICRO-BENCHMARKING MECHANISM
We developed a set of micro-benchmarks to measure the

maximum number of outstanding memory requests that ev-
ery SM can handle. We report the information gathered by
our micro-benchmark in the form of Thread-Latency plots.
Thread-Latency plots report the latency of completing cer-
tain number of memory requests. Calculating the variance
of latencies in this plot, we detect occasional saturations in
outstanding memory request handling resources. Saturation
in outstanding memory request handling resources appears
as a spike in the variance curve and indicates the maxi-
mum number of outstanding memory requests that an SM
can handle. We evaluate various memory access patterns
to estimate the capability of an SM in handling pending
memory requests. Below we explain our micro-benchmark,
Thread-Latency plot, and how we derive information from
this plot.

3.1 Micro-benchmark Skeleton
For generating Thread-Latency plots, we use the source

CUDA code skeleton shown in Listing 1. The code measures
the latency associated with completing a certain number of
global memory requests. Within the kernel, we use clock()
procedure call to measure the latency. The code varies two
parameters to control the number of memory requests: i) the
number of threads and ii) the number of loads per thread.
These two parameters are controlled by nThreads and N
in the code, respectively. We sweep nThreads from 2 to
1024 (maximum thread block size), incrementing steps of 2
threads at a time. We report a separate Thread-Latency
plot for each N, swept from 1 to 4. We limit the number of
loads per thread below the scoreboard limit. We avoid the
configurations that exceed the capability of scoreboard since
the performance in these cases is limited by the scoreboard,
not the outstanding memory request handling resources [5].

During evaluations, the code launches exactly one thread
block (line 21), assuring all threads only stress memory han-
dling resources of a single SM. Within the kernel in the code
lines 7 to 14, we measure the latency of completing N mem-
ory requests. The addresses of these memory requests are
calculated in the lines between 3 to 5. We change the ad-
dress calculation to simulate different memory patterns. In
this example, address calculation assures every memory ad-
dress points to a unique 128-byte region (indicated by UNQ
macro). We separate unique addresses by 128 bytes since the
cache line size of micro-benchmarked GPUs are 128 bytes [8].

Listing 1: micro-benchmarking code.
1 void global
2 kernel(int ∗in, int ∗out, unsigned long int ∗time) {
3 unsigned long int addr1=(unsigned long int)in+UNQ(1,gtid);
4 ...
5 unsigned long int addrN=(unsigned long int)in+UNQ(N,gtid);
6

7 syncthreads() ;
8 t1=clock();
9 int reg1, ..., regN;

10 asm(”ld.global.s32 %0, [%1+0];” : ”=r”(reg1) : ”l”(addr1));
11 ...
12 asm(”ld.global.s32 %0, [%1+0];” : ”=r”(regN) : ”l”(addrN));
13 syncthreads() ;
14 t2=clock();
15

16 out[gtid]=reg1+...+regN;
17 time[gtid]=t2−t1;
18 }
19 int main()
20 {
21 kernel<<<1, nThreads>>>(in, out, time);
22 }

This addressing pattern forces the GPU to issue a unique
memory request for each of the addresses. After measuring
the time, the time is written back to global memory at line
17. The code writebacks the accumulation of loaded val-
ues at line 16, imposing instruction dependencies to prevent
compiler optimizations from removing memory instructions.
We will provide public access to our micro-benchmarks in
the final version of the paper.

3.2 Methodology of Deducing Information from
Thread-Latency Plot

We present the Thread-Latency plot for reporting the la-
tency measured by Listing 1. We derive information from
this plot and estimate the maximum number of pending
memory requests. Each Thread-Latency plot reports the la-
tency under certain fixed i) memory pattern and ii) number
of loads per threads. The horizontal axis of this plot rep-
resents different number of threads (increasing the number
of threads means increasing the number of memory instruc-
tions). Two vertical axises report the latency and variance
of latency. We report unbiased sample variance of latency
to make latency variations clearly visible. For every point
in Thread-Latency plot, the variance curve reports the vari-
ance among the point and the two neighbors (right and left).
For every point, the variance is calculated using the follow-
ing equation:

V ar(Latthd) =

thd+1∑
i=thd−1

(Lati − µ)2

2
, µ =

thd+1∑
i=thd−1

Lati

3

Along the positive direction of the horizontal axis, where
memory requests increase, the variance curve highlights sud-
den changes in the latency curve, indicating the saturation
of memory handling resources in the hardware.

Figure 1 shows the Thread-Latency plot for one load per
thread, under the memory pattern where each thread sends
a unique memory request. In each Thread-Latency plot, two
factors can explain the spikes in the variance curve. First,
rapid change of latency is caused by serialization in coalesc-

1 16 32 48 64 80 96 112 128 144
0

2

4

·104

Number of threads

V
a
ri

a
n
ce

o
f

L
a
te

n
cy

Variance

1 16 32 48 64 80 96 112 128 144

500

1000

1500

Number of threads

L
a
ten

cy
(clo

ck
tick

s)

Latency

Figure 1: Thread-Latency plot under one load per
thread and every thread requests one unique 128-
byte block.

ing memory accesses of threads, issuing non-coalesced mem-
ory requests, and writing the data back after completion of
memory requests. Second, latency variation is caused by
the saturation of pending memory requests resources. The
second latency variation is larger. Also we observe serializa-
tion latency rapid variations appear before the saturation of
pending requests resources.

Memory issue and writeback serialization. In Thread-
Latency plot, a consistent increase can be seen in the latency
when increasing the number of threads from 1 to 32, . This
can be explained by the serialization in i) coalescing and is-
suing memory requests and/or ii) writing the fetched data
back to register file for each thread of the warp. We re-
fer to these two serializations as memory issue serialization
and writeback serialization, respectively. As the number of
threads strides beyond one warp (higher than 33), the la-
tency does not change significantly. We can infer that mem-
ory issue and writeback of different warps can be processed
in parallel (this can be achieved by parallel load/store units
in an SM). We conclude from Figure 1 that up to 96 memory
requests can be processed in parallel, as an increase in the
latency is observed just after 96 threads.

Pending memory requests. Upon saturation of pend-
ing memory request resources, the memory unit stops issuing
further requests and waits for completion of prior memory
requests. This can cause a significant spike in the varia-
tion curve of Thread-Latency plot. For instance in Figure 1
and under one load per thread plot, we can see a significant
change in the latency after 128 threads (which equals to 128
memory requests in this plot).

As reported in the variance plot of Figure 1, moving from
left to right, the first and smaller spike corresponds to mem-
ory issue and writeback serialization and the second and
larger spike corresponds to the saturation in pending mem-
ory requests resources. The second spike can be seen clearly
on 128 for one load per thread in Figure 1. We conclude
from this figure that the maximum number of outstanding
memory requests possible to accommodate is 128.

3.3 L2 Cache
In NVIDIA Fermi and Kepler GPUs all memory transfers

from host to device pass through the L2 cache. This means
that once memory transfers are completed, kernels may ac-
cess the data at the latency of L2 cache (not DRAM). As we
rely on studying variations in memory latency, understand-
ing the L2 cache is critical.

To understand the L2 cache, we wrote a kernel which sim-

ply copies a chunk of data from one part of the global mem-
ory to another. Each thread is responsible for copying a
single 8-byte data element. Accordingly, threads fetch the
data into the GPU cores and then write it back to another
address. We measure the time of completing the kernel un-
der different data sizes. We expected to see L2 cache hits so
long the overall data size stays below the L2 cache capac-
ity. In Figure 2, the plots labelled as M2070 and K20 show
the result of this micro-benchmarking under Tesla M2070
(Fermi) and K20 (Kepler), respectively. To signify the per-
formance impact of using the L2 cache, we compare this
latency to cases where L2 cache is flushed. We flush the L2
cache by copying a large dummy data (76 MB) from host
to device before kernel launch. This essentially clears the
L2 cache before the kernel launch that follows. In Figure 2,
the plots labelled M2070-flushed and K20-flushed represent
this. Comparing the flushed and non-flushed plots, we con-
clude that the performance gap saturates beyond a certain
data size. This suggests the saturation of L2 cache after that
point. Under M2070 and K20, this occurs approximately at
768 KB and 1536 KB, which are the L2 cache sizes for these
GPUs.

We use our findings and make sure that the input data size
is below L2 cache size. Consequently the spikes observed our
a result of the saturation of outstanding memory accessing
resources and not the L2 cache.

4. METHODOLOGY
We run our evaluations on two systems with different

GPGPUs; NVIDIA Tesla M2070 and NVIDIA Tesla K20.
We measure the time using clock() procedure call of CUDA.
Every reported point is a harmonic mean of three different
runs. We use CUDA Toolkit 5.5 for compiling the bench-
marks.

Our micro-benchmarking shows that every warp can issue
a limited number of independent instructions concurrently.
This limitation is imposed by the scoreboard structure used
in each GPU [5]. In the evaluated micro-benchmark, we
found that Tesla M2070 can issue up to four concurrent in-
structions per warp. We also found that Tesla K20 can issue
up to three concurrent instructions per warp.

5. RESULTS
In this section, we use the micro-benchmark presented

in Section 3 to estimate the capability of an SM in man-
aging pending memory requests. We reconfigure and run
the code under various configurations; varying memory pat-
terns, number of threads, and number of load instructions
per thread. In this section, we follow a two-step approach to
understand outstanding memory request handling resources
of Tesla M2070 and Tesla K20. At the first step, we specify
whether the micro-architecture follows an MSHR-like design
(refer to Section 2.1) or a PRT-like design (refer to Section
2.2). The micro-architecture may have a design similar to
MSHR table, if the spikes in Thread-Latency plot of GPU
depend on the i) number of concurrent threads and ii) num-
ber of loads per thread. The micro-architecture may have a
design similar to PRT, if the spikes in Thread-Latency plot
of GPU depend on the number of warp instructions. In ei-
ther case, at the second step, we tune the micro-benchmarks
to measure design specifics. For MSHR, we look for the
number of MSHRs and mergers fields per MSHR entry. For

PRT, we look for the number of PRT entries per SM.

5.1 Tesla M2070
MSHR or PRT? Figure 3 shows a Thread-Latency plot

where each thread sends a load request for one unique 128-
byte memory block. As reported, a significant variation
in latency can be observed upon increasing the number of
threads from 128 to 130. From this figure, we infer that SM
allows up to 128 unique memory requests. A similar trend
can be seen in Figure 4 which shows the Thread-Latency
for two loads per thread. We observe a significant change in
the latency after 64 threads (which equals to 128 memory
requests in this plot). As the spikes in Thread-Latency plot
directly relate to the number of threads and the number of
loads per thread, we can conclude that each SM of Tesla
M2070 has a structure similar to MSHR table for handling
outstanding memory requests.

Parameters of MSHR. Knowing each SM exploits an
MSHR table, we look for the number of redundant memory
requests that each MSHR entry can merge. Based on our
earlier micro-benchmarking, we increase the number of re-
dundant memory requests within the warp to measure the
merging capability. We evaluate the following memory pat-
terns:

• Merger2: every two neighbor threads of the warp
send a load request for the same address (total of 16
unique requests per warp),

• Merger4: every four neighbor threads of the warp
send a load request for the same address (total of eight
unique requests per warp),

• Merger8: every eight neighbor threads of the warp
send a load request for the same address (total of four
unique requests per warp),

• Merger16: every 16 neighbor threads of the warp
send a load request for the same address (total of two
unique requests per warp),

• Merger32: every 32 threads of the warp send a load
request for the same address (total of one unique re-
quest per warp),

Figure 5 shows Thread-Latency plot under Merger2 mem-
ory pattern where each thread executes one load instruction.
As shown in the figure, there is a huge spike upon moving
beyond 256 threads, which equals to 128 unique memory re-
quests. Hence, we can infer that SM allows up to 128 unique
memory requests and can also merge up to 128 redundant re-
quests. In other words, SM has enough resources to keep 128
pending memory requests and can merge at least one other
redundant request with each of those pending requests.

Figure 6 reports Thread-Latency plot under Merger4 mem-
ory pattern where each thread executes two load instruc-
tions. There is a significant variation in the latency when
increasing the number of threads beyond 256. This point
equals to a total of 512 requests (256*2) from 256 threads,
which are later merged into 128 unique memory requests
(512/4=128 according to the memory pattern). We can
infer that each SM can keep up to 128 pending memory re-
quests and can merge four other requests with each of the
pending requests.

Figure 7 reports Thread-Latency plot under Merger8 mem-
ory patter where each thread executes four load instructions.

128KB
256KB

384KB
512KB

640KB
768KB

896KB

1024KB

1152KB

1280KB

1408KB

1536KB

1664KB

1792KB

1920KB

2048KB
0

5

10

15

20

Input and Output size

L
a
te

n
cy

(m
ic

ro
-s

ec
)

K20 K20-flushed

M2070 M2070-flushed

Figure 2: Micro-benchmarking L2 cache under Tesla M2070 and K20. Comparing flushed to non-flushed
plots clearly shows the saturation of L2 cache after certain data size.

32 48 64 80 96 112 128 144
0

2

4

·104

Number of threads

V
a
ri

a
n
ce

o
f

L
a
te

n
cy

Variance

32 48 64 80 96 112 128 144

500

1000

1500

Number of threads
L

a
ten

cy
(clo

ck
tick

s)

Latency

Figure 3: Thread-Latency plot under Tesla M2070,
one load per thread, and every thread requests one
unique 128-byte block.

32 48 64 80
0

2

4

6

·104

Number of threads

V
a
ri

a
n
ce

o
f

L
a
te

n
cy

Variance

32 48 64 80

500

1000

1500

Number of threads

L
a
ten

cy
(clo

ck
tick

s)

Latency

Figure 4: Thread-Latency plot under Tesla M2070,
two loads per thread, and every thread requests two
unique 128-byte blocks.

There is a significant spike in variation plot just after 256
threads. This point equals to 1024 requests (256*4) from
256 threads, which are later merged into 128 unique requests
(1024/8=256 according to the memory pattern). We can
infer that each SM can keep up to 128 pending memory re-
quests and can merge eight other requests with each of the
pending requests.

For Merger16 and Merger32, we could not observe a sig-
nificant spike in Thread-Latency plots. Our guess is another
resource may have been saturated, flattening MSHR satu-
ration spikes.

Finding. According to the observations above, we infer
that each SM of Tesla M2070 has a 128-entry MSHR table to
handle outstanding memory requests. We can also conclude
each MSHR entry can merge up to eight requests.

160 176 192 208 224 240 256 272 288
0

0.5

1

1.5

·104

Number of threads
V

a
ri

a
n
ce

o
f

L
a
te

n
cy

Variance

160 176 192 208 224 240 256 272 288

500

1000

1500

Number of threads

L
a
ten

cy
(clo

ck
tick

s)

Latency

Figure 5: Thread-Latency plot under Tesla M2070,
one load per thread, and every two neighbor threads
request one unique 128-byte block.

160 176 192 208 224 240 256 272 288 304
0

2

4

6

8

·104

Number of threads

V
a
ri

a
n
ce

o
f

L
a
te

n
cy

Variance

160 176 192 208 224 240 256 272 288 304

500
1000
1500
2000
2500
3000

Number of threads

L
a
ten

cy
(clo

ck
tick

s)

Latency

Figure 6: Thread-Latency plot under Tesla M2070,
two loads per thread, and every four neighbor
threads request two unique 128-byte blocks.

5.2 Tesla K20
MSHR or PRT? Figure 8, 9, and 10 show Thread-

Latency plot under Tesla K20 GPGPU. All figures report
numbers for a memory pattern where every load instruction
has a unique address. Figures differ in the number of load
instructions per thread. Figure 8, 9, and 10 report num-
bers under one, two, and three load instructions per thread.
Under one load instruction per thread, we do not observe a
significant spike in Thread-Latency. This can be explained
by the fact that outstanding memory handling resources are
not saturated. Under two load instructions per thread, we
observe a significant spike just after 680 threads. At this
point, we have launched 22 warps. Assuming two load in-
struction per warp, we can also say we issue 44 warp load
instructions at this point. Under three load instructions per
thread, we observe a significant spike just after 454 threads.

240 256
0

0.5

1

1.5

2
·105

Number of threads

V
a
ri

a
n
ce

o
f

L
a
te

n
cy

Variance

240 256

1000

2000

3000

4000

Number of threads

L
a
ten

cy
(clo

ck
tick

s)

Latency

Figure 7: Thread-Latency plot under Tesla M2070,
four loads per thread, and every eight neighbor
threads request four unique 128-byte blocks.

At this point, we have launched 15 warps. Assuming three
instruction per warp, we can also say we issue 45 warp load
instructions at this point. Comparing our findings in Figures
9 and 10, we can conclude that each SM can concurrently
issue at least 45 warp load instructions. Since the number
of outstanding memory requests in this GPU depends on
the number of warp instructions, not the number of threads
and load instructions per thread, we can infer that this GPU
uses a design similar to PRT.

Finding. We conclude that there is strong evidence that
outstanding memory requests handling resources in Tesla
K20 may have a design similar to PRT described in 2.2 and
the table has at least 45 entries. Since each entry should
store 32 requests to support the entire threads of the warp,
we can also conclude that each SM can support up to 1408
(44 x 32) outstanding unique memory requests.

6. RELATED WORK
Wong et al. [10] introduced a set of micro-benchs, re-

vealing wide set of micro-architectural details on NVIDIA
GTX280 GPU, including the latency and throughput of dif-
ferent instructions and cache hierarchy of different memory
spaces. They also investigated the behavior of intra- thread
block synchronization and intra-warp branch divergence.

Zhang et al. [11] developed a set of micro-benchmarks to
understand the impact of VLIW utilization on the power
consumption of ATI GPUs. They found that increasing
VLIW utilization from 20% to 100% can increase the power
consumption by nearly 33%.

Anderson et al. [1] used micro-benchmarking to under-
stand shared memory, global memory, and intra- thread
block synchronization in NVIDIA Fermi architecture. They
reported that the achievable bandwidths are 75% and 85.4%
for shared and global memory respectively. They also found
that the latency of shared memory and global memory are
27 and 570 cycles, respectively. They showed that address
calculation overhead in Fermi architecture significantly in-
creases the shared memory access time, while the address
calculation overhead is negligible for global memory accesses.
They also presented that the latency of intra- thread block
synchronization depends heavily on the thread block size, if
the thread block size is below 256 threads.

7. CONCLUSION
We used micro-benchmarking to understand GPGPU re-

sources in handling outstanding memory requests. We in-

vestigated two generations of NVIDIA GPUs; Fermi and
Kepler. First, we explained two alternative designs for the
micro-architectural details of outstanding memory requests
handling resources, MSHR and PRT. Then, we used micro-
benchmarking to understand whether the GPU may use ei-
ther of these designs. We showed that our evaluated Fermi
GPU uses a design working similar to a 128-entry MSHR ta-
ble and each entry can merge at least eight requests. On the
evaluated Kepler GPU, we showed that the GPU could be
using a 45-entry PRT-like design. Our findings can be useful
to programmers in optimizing the memory access pattern of
the applications in respect to hardware capability.

8. REFERENCES
[1] M. Anderson et al. A predictive model for solving

small linear algebra problems in gpu registers. In
IPDPS 2012.

[2] A. Bakhoda et al. Analyzing cuda workloads using a
detailed gpu simulator. In ISPASS 2009.

[3] D. Kroft. Lockup-free instruction fetch/prefetch cache
organization. In ISCA 1981.

[4] A. Lashgar and A. Baniasadi. A case against small
data types in gpgpus. In ASAP 2014.

[5] S. Moy and J. Lindholm. Across-thread out of order
instruction dispatch in a multithreaded graphics
processor, June 23 2005. US Patent App. 10/742,514.

[6] NVIDIA Corp. Nvidia’s next generation cuda compute
architecture: Kepler gk110. Available:
http://www.nvidia.ca/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[7] L. Nyland et al. Systems and methods for coalescing
memory accesses of parallel threads, Mar. 5 2013. US
Patent 8,392,669.

[8] Y. Torres et al. Understanding the impact of cuda
tuning techniques for fermi. In HPCS 2011.

[9] C. Wittenbrink et al. Fermi gf100 gpu architecture.
IEEE Micro, 31(2):50–59, March 2011.

[10] H. Wong and others. Demystifying gpu
microarchitecture through microbenchmarking. In
ISPASS 2010.

[11] Y. Zhang et al. Performance and power analysis of ati
gpu: A statistical approach. In NAS 2011.

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0

500

1,000

1,500

2,000

Number of threads

V
a
ri

a
n
ce

o
f

L
a
te

n
cy

Variance

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

1000

2000

Number of threads

L
a
ten

cy
(clo

ck
tick

s)

Latency

Figure 8: Thread-Latency plot under Tesla K20, one load per thread, and every thread requests one unique
128-byte block.

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0

0.5

1

1.5

·105

Number of threads

V
a
ri

a
n
ce

o
f

L
a
te

n
cy

Variance

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

1000
2000
3000
4000
5000
6000

Number of threads

L
a
ten

cy
(clo

ck
tick

s)

Latency

Figure 9: Thread-Latency plot under Tesla K20, two loads per thread, and every thread requests two unique
128-byte blocks.

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0

0.5

1

1.5

·105

Number of threads

V
a
ri

a
n
ce

o
f

L
a
te

n
cy

Variance

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

1000
2000
3000
4000
5000
6000
7000
8000
9000

Number of threads

L
a
ten

cy
(clo

ck
tick

s)

Latency

Figure 10: Thread-Latency plot under Tesla K20, three loads per thread, and every thread requests three
unique 128-byte blocks.

