
Employing Compression Solutions under OpenACC

Ebad Salehi∗, Ahmad Lashgar†, Amirali Baniasadi‡

Department of Electrical and Computer Engineering, University of Victoria
Email: ∗ebads67@uvic.ca, †lashgar@uvic.ca, ‡amiralib@uvic.ca,

Abstract—For GPUs to achieve their peak performance,
effective and efficient usage of memory bandwidth is necessary.
To this end, programmers invest extensive development effort
to optimize a GPU program, specially its memory bandwidth
usage. The OpenACC programming model has been introduced
to tackle the accelerators programming complexity. However,
this model’s coarse-grained control on a program can make the
memory bandwidth utilization even worse than the utilization
achieved under CUDA. We propose an extension to OpenACC
in order to reduce the traffic on the memory interconnection
network, using a compression method on floating point num-
bers. We examine our method on three case studies and achieve
up to 1.36X speedup.

Keywords-OpenACC; Compression; Accelerators

I. INTRODUCTION

Graphics Processing Units (or simply GPUs) can po-
tentially provide very high peak performance. This high
performance, however, has proven to be very difficult to
achieve. There are many obstacles facing designers in the
path to achieve this performance. In particular, in order
to make use of the high amount of computation power
in GPU computational resources, the required data should
be accessed from memory in a very timely fashion. One
way to achieve lower memory access time is to use the
memory bandwidth more efficiently. To this end, many
studies have suggested both hardware and software solutions
[6], [17], [11]. Despite all past efforts, developing a GPU
program which utilizes the memory bandwidth effectively
and efficiently calls for strong skills and vast experience.

Programming models such as CUDA allow for fine-
grained control over both data and parallelism. CUDAs
flexibility allows programmers to fully optimize their ap-
plications, albeit by extensive development effort. The Ope-
nACC programming model [5] was designed to alleviate the
complexity of accelerator programming. OpenACC provides
programmers with a directive-based API so that they can
accelerate compute intensive parts of codes by offloading the
computations to the accelerator. Although OpenACC may
decrease the development effort by a factor of 6.5X[16], it
can harm performance.

In this work we enhance GPU performance by proposing
a set of clauses for OpenACC to allow programmers to
achieve faster runtime at the expense of negligible accuracy
cost. These clauses make it possible for programmers to
mark the datasets for which they do not need full precision

and therefore can exploit compression. Once such data sets
are identified, then our run-time framework performs a fast
analysis on the data and applies the compression method.
It also stores the necessary information later required for
decompression.

In summary, we make the following contributions:
• We introduce a new double-precision floating-point

compression technique for GPUs to save global mem-
ory bandwidth. Our technique reduces the memory
bandwidth demand by half.

• We propose a novel OpenACC clause that allows pro-
grammers to exploit our compression technique readily
in a high-level language. We show that with minor
modification in existing OpenACC code, we can en-
hance OpenACC applications to take advantage of our
compression technique.

• We evaluate our proposed compression solution for
three OpenACC benchmarks. In each benchmark, we
investigate various data set sizes and compare the
performance of our proposed solution to the baseline
OpenACC.

• We investigate the run-time performance of our com-
pression technique, reporting the breakdown of time in
i) kernel execution, ii) kernel launch, and iii) compres-
sion overhead.

The remainder of the paper is as follows. In Section 2,
we review the background of accelerator programming plat-
forms and present a brief summary of the floating point
IEEE 754 Standard. In Section 3, we introduce our proposed
OpenACC clauses and discuss how to use them. In Section
4, we present our methodology. In Section 5, we evaluate our
solution using three case studies. In Section 6, we discuss
issues regarding the clauses applicability and performance.
In Section 7, we review related works. Finally, in Section 8
we offer conclusions.

II. BACKGROUND

A. CUDA

CUDA programs consist of host and device codes which
execute on CPU and GPU respectively. Parallel portions
of the code which are executed on the device are referred
to as kernels. Thousands of lightweight threads execute
the same CUDA kernel. These threads are identified by
their unique ID and access different bytes of an off-chip



DRAM memory which is shared among them. This results
in a huge number of memory requests. Depending on how
memory intensive an application is, the memory traffic can
saturate the memory bandwidth and make it a bottleneck.
Matrix multiplication is an example of such applications.
One solution to this problem is to tune CUDA programs
and employ computation overlapping techniques to hide the
memory latencies. However, this is a tedious process and is
not always possible.

B. OpenACC Model

OpenACC is an API by which programmers can offload
regions of a serial code from CPU to an accelerator. This
API provides two types of compiler directives to facilitate
the process of accelerating serial codes. The two API classes
are data management and parallelism control. Directives
can be accompanied by multiple clauses to control different
parameters.

Data management directives allow programmers to trans-
fer data between host and accelerator device as well as allo-
cating device memory. Parallelism control directives specify
regions of the code which are intended to be executed
on the accelerator (e.g., mostly work-sharing loops). They
also enable controlling parallelism at different granulari-
ties, variable sharing/privatization, and variable reduction.
In OpenACC there are four levels of parallelism: gang,
worker, vector, and thread. The equivalent terms in CUDA
terminology are kernel, thread block, warp, and thread,
respectively.

C. Floating Point

Floating point standard is defined in the IEEE 754 Stan-
dard so that different platforms can exchange floating point
data consistently. Two types of floating point numbers,
which are commonly used are 32 and 64 bit numbers. 32
bit encoding is referred to as single-precision and the 64
bit standard is called double-precision. The float and
double types are the equivalent C data types respectively.
Any floating point number consists of a sign bit, exponent
part, and mantissa. Figure 1 illustrates how many bits are
dedicated to each part of floating point numbers in IEEE 754
standard. (The numbers in brackets corresponds to double
precision.)

Floating point representation covers a large range of real
numbers. The precision of a number stored in this format
is inversely proportional to its magnitude. Small numbers
have higher precisions and precision drops as the numbers
grow. Formula 1 decodes binary floating point numbers in
IEEE 754 format. One can realize that the floating point
numbers between two consequent powers of two have equal
exponents and differ only at their mantissa. Hence, the
number of numbers that can be encoded in floating-point
between consequent powers of two is constant and limited to
the mantissa’s different values. We exploit this fact and map

Figure 1. IEEE 754 Floating Point Format

a range of numbers to a range of same-exponent numbers
and omit the redundant exponent part.

(−1)sign × 2exponent−bias × (1.mantissa)2 (1)

III. PROPOSED COMPRESSION CLAUSES

In this section, we introduce our new OpenACC clauses
by which programmers can reduce the memory bandwidth
load of their program. Applying these clauses to a data set
compresses it on the host and transfers the compressed data
set to the device. Consequently, less traffic is generated on
memory interconnection network when the kernel tries to
access the compressed data.

The proposed clauses should be used together and in two
different stages of the OpenACC code; i. Data transfer, ii.
Kernel generation.

A. Data Transfer Clauses

Any data set used in the kernel regions can be transferred
to the accelerator device by one of the clauses listed in table
I. To use compression on a data set, the data must first be
copied by one of the proposed clauses in the right column
of table I instead of the regular data transfer clauses in the
left column. This makes the compiler call an alternative API
function, which compresses the data before copying it to the
device. In the meantime other modifications may be done on
the data (e.g. changing the array of structs to struct of arrays)
so that it makes the compression more effective.

In addition to the predefined parameters, we also introduce
two optional input parameters (Min and Max) for data
transfer clauses. Programmers can specify the range of the
data set by these two parameters, and therefore reduce the
compression overhead. However, passing these parameters
is mandatory if there is a possibility that the range of the
data set can vary during the application execution. Since for
correct functionality, the compression method needs to know
the range of the data set, the programmer is responsible to
make sure that program is informed of the accurate range.
Note that the more tight this range is, the more precise the
compression method. Hence, the programmer should specify
the narrowest possible range. Below we show an example
of applying compression on a data set, named cdata:

compression copy(cdata[0:SIZE:MIN:MAX])
In this example MIN and MAX are the minimum and

maximum of the data set.



Listing 1. OpenACC Matrix-Matrix Multiplications Using Compression

#pragma acc data\
pccopyin(a[0:SIZE*SIZE],b[0:SIZE*SIZE])\
pcopyout(c[0:SIZE*SIZE])

#pragma acc kernels compression(a,b)
#pragma acc loop independent
for (i = 0; i < SIZE; ++i) {
#pragma acc loop independent

for(j=0; j<SIZE; j++){
float sum=0;
for(l=0; l<SIZE; l++){

sum += a[i*SIZE+l]*b[l*SIZE+j];
}
c[i*SIZE+j]=sum;

}
}

Table I
COMPRESSION COPY CLAUSES

Regular Data Compressed Data
copyin compression_copyin(ccopyin)

present_or_copyin present_or_compression_copyin
(pcopyin) (pccopyin)

copy compression_copy(ccopy)
present_or_copy present_or_compression_copy

(pcopy) (pccopy)
copyout compression_copyout(ccopyout)

present_or_copyout present_or_compression_copyout
(pcopyout) (pccopyout)

B. Compression Clause

After the compressed data is copied to the device, the
compiler must be instructed to generate kernels which work
properly with the compressed data. In fact, kernels need
to decompress the compressed data before the first use.
Therefore, pointers to the compressed data sets must be
marked by the compression clause on the kernels
or the parallel directive. While compression can
be used on kernels directive, the data transfer clauses
can be used on both kernels and data directives. For
instance, listing 1 shows the OpenACC implementation of
matrix-matrix multiplication using our proposed clauses.
pccopyin is used on data directive to transfer matrices
a and b. Also the kernel directive is annotated by
compression clause with a and b matrix pointers.

C. Compression

To compress the floating point numbers we use a flexible
method which can pack any floating point number into an
arbitrary small set of bits. In the first step we find the
number which has the maximum absolute value in the data
set. This step is done only if the programmer does not
specify the data set range. We use the specified range to
calculate the maximum absolute value in the data set if it is

available. By dividing all the numbers in the data set by the
maximum absolute value multiplied by two, we map them
to the (-0.5,+0.5) range. We then add each number to 1.5
and change the range to (1,2). Accordingly, the exponent
part of all these floating point numbers will be equal to
01111111 in case of single precision and 01111111111 in
case of double precision. Therefore the exponent part can
be omitted from the number representation, without losing
any information. Then, we only keep a limited number of
mantissa’s significant bits to compress data. For instance, to
apply a compression ratio of 2 to a single precision floating
point number, the seven least significant bits of mantissa
should be thrown away. At the end, 16 bits remain which
are stored as the compressed format of a 32-bit floating
point number. Code listing 2 shows the compression method
implementation for compression ratio of 2.

Figure 2 is an example of compressing a 32-bit floating
number which in this case is Pi. Figure 2.1 shows the most
accurate binary representation of Pi in single precision
floating point format. Assuming that the maximum absolute
value of the numbers is 4.0, numbers of the data set must
be divided by 8.0 (4.0 × 2) and added to 1.5, so that they
are in the range (1,2). Figure 2.2 shows the Pi mapped to
(1,2) in binary format. After shifting the bits 7 times and
truncating the exponent and the sign bits, 16 bits remain as
the compressed number (Figure 2.3).

Listing 2. Compression Implementation in C

for ( i = 0; i < arraySize/sizeof(float);
i++) {

float temp = floatData[i]/(2*maxAbs) +
1.5;

twoByteDataPtr[i] =( (*((unsigned
int*)&temp) ) >>7) & 0x0000FFFF;

}

D. Decompression

In order to decompress a compressed number, we shift its
bits to left so that it forms 23 or 52 bit mantissa for single
and double precision floating points, respectively. The new
bits that fill the least significant part are a 1 followed by
0s. The reason why we do so is that each compressed data
represents a range of uncompressed floating point numbers.
If we fill all of the least significant bits with zeros, the
decompressed number would be the first number of the
range. However, now that we start the least significant part
with 1, the decompressed number is the center of the range
and is probabilistically a better approximation of the original
uncompressed number. After filling the exponent part by the
values which have been omitted in the compression stage we
have a floating point number in the range between one to
two. By subtracting the number by 1.5 the numbers range



changes back to (-0.5,0.5). In the last step, we multiply
this by the data set maximum absolute value multiplied by
two. The result is an approximation of the original number.
Figures 2.4 and 2.5 illustrate the decompression of Pi. The
white colored bits in figure 2.4 show the lost least significant
bits that are replaced. Finally, figure 2.5 shows the fully
decompressed Pi number. The 8 rightmost bits are the ones
in which decompressed Pi and the original single precision
Pi differ.

In order to optimize the decompression function we
change the order of operations. Instead of performing sub-
traction by 1.5 and multiplication we distribute the multi-
plication as indicated in equation 2. This way the compiler
replaces the subtraction and multiplication instructions with
a single fused multiply-add instruction [15]. Hence, two
constant values, named key1 and key2, are needed for
decompression as indicated in equation 3. We calculate them
on the host at the compression stage and copy them on the
constant memory. There is a total of 64 KB constant memory
on a GPU device which is accessed through an 8KB cache on
each SM. A 4-byte data in constant cache can be broadcast
among threads with a very low latency[3], [2]
.

Code listing 3 shows the decompression of a 4-byte
floating point number compressed in a 2-byte format.

2MaxAbs×(X−1.5) = 2MaxAbs×X−2MaxAbs×1.5
(2)

= key1 ×X + key2 (3)

where
key1 = 2MaxAbs,

key2 = −3MaxAbs

Listing 3. Decompression Implementation in CUDA

__device__ __inline__ float decompress(void
*ptr,int index,float* coef){

unsigned int temp;
temp=((unsigned short*)ptr)[index];
temp=temp<<7;
return ((*((float*)&(temp=temp |

0x3F800000))*key[0]+key[1]));
}

IV. METHODOLOGY

A. Benchmarks

We use benchmark applications from Rodinia benchmark
suit [7]. Rodinia benchmark suite consists of many scientific
and engineering applications implemented for heterogeneous
platforms in CUDA and OpenMP. A third party OpenACC
implementation is also available [1].

B. OpenACC Compiler

We use our framework, IPMACC[13], which is composed
of a source to source compiler and a runtime system. The
compiler translates OpenACC to either CUDA or OpenCL
codes. Applications are executed over IPMACC runtime,
which is built on CUDA and OpenCL runtime (e.g. NVIDIA
GPUs or AMD GPUs).

C. Performance Evaluations

In order to validate the result correctness of programs
compiled by our framework we compare the outputs by
the CUDA and serial versions. We considered three metrics
in performance evaluations; total kernel execution time,
application run-time and compression overhead time. We use
nvprof [4] for measuring kernel execution time while system
time is used for the rest of time measurements through
POSIX time library. Reported results are based on average
of multiple runs of the applications.

D. Platform

We evaluated our method using NVIDIA Tesla K20c as
the accelerator. This system uses NVIDIA CUDA 6.0 [3] as
the CUDA implementation backend. The other specifications
of this system are as follows: CPU: Intel Xeon CPU E5-
2620, RAM: 16 GB, and operating system: Scientific Linux
release 6.5 (Carbon) x86 64.We use GNU GCC 4.4.7 for
compiling C/C++ files.

V. EXPERIMENTAL RESULTS

In this section we show how our solution improves perfor-
mance in three case studies. We compare the performance
of baseline OpenACC and OpenACC compression-enhanced
implementations.

A. Matrix Multiplication

Matrix multiplication is one of the basic operations in
scientific computations. We simply add OpenACC annota-
tions to the serial code and apply our compression method
to the program. The computational phase in the serial code
consists of three nested for loops which are marked by the
kernels directive to be executed on the accelerator. Two
outer for loops are also annotated by the loop directive so
that the work of each iteration is shared among threads. The
independent clause, which is used with the loop direc-
tive, is a hint to the compiler not to check for dependencies
between iterations of the loops. The inner for loop iterations
are executed sequentially by a single thread.

In figure 3 we report the kernel time improvement
achieved over the baseline OpenACC implementation by us-
ing the compression method. Compression becomes highly
effective on matrix dimensions of larger than 64. Figure 4
illustrates the total application run-time improvement. Total
run-time consists of memory allocations, data initializations
and transfers, compression time, and kernel time. We can



Figure 2. Illustration of Compression and Decompression methods

Figure 3. Matrix-Matrix Multiplication Kernel Time Improvement

see that for matrices with dimensions greater than 4096 the
compression overhead is compensated. The breakdown of
total baseline and compression-enhanced application run-
time is reported in figures 6 and 5, respectively. These figures
show that the Kernel time constitutes a larger portion of
application run-time, and the compression and the memory
transfer time become less important as the matrices sizes
grow. Hence, achieving 25% less kernel time is worth extra
compression calculations before the kernel launch which
may even double the application launch time.

Using compression also helps reducing the data transfer
time between CPU and GPU. However, this transfer time
is not a noticeable fraction of the total application time,
specially in comparison with the compression time and the
kernel time. Hence, we do not separate it from application
launch time.

We also measured the error caused by compression.
Different matrices composed of random numbers of various
ranges were generated to test the accuracy of the compres-
sion method. We compared the results for our application
and its compression-enhanced version. The geometric mean
of relative errors is 0.006% and the maximum error is equal
to 0.01%. These errors are independent of input numbers
ranges and size of input matrices.

Figure 4. Matrix-Matrix Multiplication Application Run-Time Improve-
ment

Figure 5. Compression-Enhanced MM Multiplication Breakdown

B. HotSpot

HotSpot is commonly used to measure processor
temperature under different architectural features and power
consumptions. HotSpot performs a thermal simulation by
solving a set of differential equations for a block of cells
iteratively. Each cell’s temperature in the computational
grid is associated with the average temperature value of the
chip area it represents.

We perform our experiments on grid sizes ranging from 64



Figure 6. Baseline MM Multiplication Breakdown

Figure 7. HotSpot Kernel Performance Improvement

cells in each dimension to 1024. This benchmark contains
two data sets, cells’ temperatures and cells’ powers, both
stored in the double precision floating point format. We
evaluated compression applying it on both data sets. But
we ended up using compression only on the powers data
set. We further discuss this in the section VI. We used the
compression clause on the computation phase kernel. Figure
7 illustrates performance improvement for the compression-
enhanced kernel.

In each iteration of the program the kernel is launched
once. Figure 8 compares the run-time of the application,
simulating a grid size of 512, in the course of the first
700 iterations. The reported time includes data transfer
times and device initializations. The compression overhead
explains why the compression-enhanced application run-
time is initially above the baseline. The accuracy loss of
the final result caused by data compression is negligible.
The maximum relative error is 10−8% after 4000 iterations.

C. Nearest Neighbor

Nearest Neighbor (NN) finds the k-nearest neighbors of
a point from a data set in a two dimensional space. The
serial version calculates distances to all the records and finds
the k nearest neighbors. The OpenACC version performs
distance calculations on the accelerator in parallel and the
host’s master thread selects the k nearest neighbors. The
input data set consists of many records and is in fact an
array of structures (AoS). Each record is an object of a C
struct which has two attributes, latitude and longitude.

Figure 9. NN Kernel Time Improvement

In order to maximize bus utilization, all the memory re-
quests from a warp should access neighbor bytes of memory.
If each thread requests a 4-byte data and the address of the
first thread’s requested data is aligned, then all requests can
coalesce into one memory transaction. In this case the bus
utilization is 100%. To this end, it is highly recommended to
change the arrangement of arrays of structures to structure of
arrays (SoA) in SIMD architectures. This enhances spatial
locality significantly.

Our compiler provides a transparent and low overhead
data transformation on arrays of structures. This data trans-
formation can be applied to an array while it is being
compressed. In the compression stage each floating-point
object is copied to a new smaller array after being com-
pressed. Array transformation only changes the location of
the compressed data in the new array, and, therefore, adds
a minimal overhead to compression. Figure 9 demonstrates
the kernel time improvement using compression with and
without array transformation. We can achieve 1.36X speedup
if we apply compression and data transformation. Since,
the kernel time constitutes an insignificant portion of the
application run-time, we do not report speedup over that.

We measured the geometric mean of errors through all the
calculated distances as 0.003% and the maximum relative as
0.018%.

D. Dyadic Convolution

Dyadic Convolution is an algebra operation calculating the
XOR-convolution of two sequences. The OpenACC imple-
mentation parallelizes output calculations, where each thread
calculates one output element. Although this implementation
is fast to develop, it exhibits a high number of irregular
memory accesses. We applied the compression clause on the
main data set. Figure10 shows the kernel time improvement
for different data set sizes, using compression.

VI. DISCUSSION

According to our evaluations applying compression
clauses is effective in reducing memory access latencies and
traffic in many cases. However, there are a few cases in
which the compression or decompression overhead negates
the improved memory latencies, and therefore no speedup



Figure 8. HotSpot Application Run-Time for First 700 Iterations

Figure 10. Dyadic Convolution Kernel Time Improvement

can be achieved. For instance, applying compression on
cells temperatures data set in HotSpot benchmark is not
effective. The reason is that each thread is responsible to
calculate the new temperature of a cell using neighbor cells
temperatures. Therefore, a cell temperature may be accessed
by many threads. Once a block of data is accessed, it is
copied to the L1 cache so that further accesses to that block
hit in the cache. Using compression decreases the memory
latency of bringing data from memory. But it does not help
in reading data from the L1 cache, and it only imposes extra
compression and decompression overhead. So except for the
first thread that accesses a cell temperature, the others cause
overheard without any gain, so long the cell data is not
evicted from the L1 cache.

This problem arises because cache is a transparent unit
in the memory hierarchy and we do not have control on
its behavior. A solution to this issue is using the shared
memory. Data sets can be decompressed after being fetched
from memory and before being used for the calculations
in the threads. In this scheme the decompression is done
once for each element of the data set and extra overhead is
prevented. This is part of our ongoing work.

We performed many experiments to figure out the rea-
son why from certain data set sizes the performance gain
declines (eg. Figure 3). This happens because of the L2
cache behavior. Compressing the data not only does lead to
less memory bandwidth usage but also allows the memory
system able to fit more data elements into the cache. Having

this in mind, we can explain why, for example, in Figure 3
we see a reduction in the speedup for matrices larger than
4096. With this data element number, the kernels enhanced
with the compression method can fully fit their data into
the L2 cache while normal kernels with the same data
element number need to use global memory as the data
size is beyond the capacity of the L2 cache. As the data
element number grows, compression enhanced kernels also
need to use global memory, and this lessens the gap between
compression enhanced kernels performance and the normal
ones. As a result the speedup gained by the compression
method shrinks.

VII. RELATED WORK

To the best of our knowledge, our work is the first
attempt to add compression capabilities to compiler directive
based frameworks. Samadi et al. [14] developed SAGE,
a transparent approximation system, which accepts CUDA
programs and improves performance at the cost of losing
accuracy to the level programmers specify. Their static com-
piler automatically generates multiple kernels with various
degrees of approximation and a run-time system chooses
between them according to the feedbacks. They applied data
compression to reduce DRAM memory bandwidth usage as
an approximation technique.

Hoshino et al. [9] investigate the impact of memory layout
on the performance of NVIDIA Kepler, Intel XeonPhi, and
Intel Xeon processors, under directive- based programming
languages. They found that having structure-of-arrays is
much more efficient than array- of-structures under Kepler
and XeonPhi, while it has minor impact on the performance
of Xeon. They explain this by the relatively smaller cache
employed by Kepler (110 Bytes per hardware thread) and
XeonPhi (128 KBytes per hardware thread), compared to
Xeon (1048 KBytes per hardware thread). They also intro-
duce a new directive allowing the programmer to change the
data layout of multi-dimensional arrays.

Wienke et al. [16] compare the performance and develop-
ment effort of two OpenACC applications to their equivalent



OpenCL implementation. They measured the development
effort by considering the modified code lines and found that
OpenACC requires 6.5X lower development effort compared
to OpenCL. They also reported the best-effort performance
gap is of 2.5X. They found that this large performance gap
is due to OpenACCs inability to exploit software-managed
cache.

Kraus et al. [12] investigated the opportunity to im-
prove the performance of CFD workloads through Ope-
nACC. They applied several CUDA-like optimizations at
the OpenACC level, including texture cache and occupancy
optimizations. They apply texture memory optimization by
declaring variables as constant. They alter the streaming
multiprocessors occupancy by specifying vector length (or
thread-block size). They found that the optimal occupancy is
the point with higher cache hit rate, since the CFD workloads
tend to work on large working sets. They also transform
array-of-structures to structure-of-arrays to optimize mem-
ory layout (returned nearly 52% performance improvement).

Govett et al. [8] compare the performance of three differ-
ent OpenACC implementations under NIM work-load. They
perform three optimizations on their own implementation,
called F2C-ACC. Among these optimizations, they found
that variable demotion technique can improve performance
significantly. Variable demotion avoids transferring the en-
tire dimension of an array when only certain indices are
accessed. This can reduce the memory transfer time and
also allow generation of more efficient kernel code. For
instance, variable demotion on a 1D array, where possible,
can replace global memory array accesses with scalar or
register accesses.

Hoshino et al. [10] studied the performance of two
OpenACC microbenchmarks and one real-world CFD ap-
plication. They examined the common and application-
specific optimization techniques for OpenACC and CUDA.
They found that the current OpenACC compilers achieve
about 50% to 98% of performance of the CUDA versions
depending on the compiler.

VIII. CONCLUSION

In this paper we introduced a set of OpenACC clauses
to enable programmers to accelerate their codes with very
low development effort. Our compiler and run-time system
performs a transparent compression on the data sets marked
by these clauses and hence reduces the memory latencies.
We achieve speedups up to 1.36X on GPU kernels from real
world applications.

REFERENCES

[1] Modified rodinia benchmark suite, 2013. [online]. available:
https://github.com/pathscale/rodinia.

[2] Nitin gupta, what is constant memory in cuda. avail-
able: http://cuda-programming.blogspot.ca/2013/01/what-is-
constant-memory-in-cuda.html.

[3] Nvidia corporation, .cuda toolkit 6.0,. 2014. available:
https://developer.nvidia.com/cuda-downloads.

[4] Nvidia corporation, profiler’s user guide, 2014. available:
http://docs.nvidia.com/cuda/profiler-users-guide/.

[5] The openacc application programming interface, 2013. [on-
line]. available: http://www.openacc-standard.org.

[6] M. Bauer, H. Cook, and B. Khailany. Cudadma: Optimizing
gpu memory bandwidth via warp specialization. In Proceed-
ings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages
12:1–12:11, New York, NY, USA, 2011. ACM.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron. Rodinia: A benchmark suite
for heterogeneous computing. In Proceedings of the 2009
IEEE International Symposium on Workload Characterization
(IISWC), IISWC ’09, pages 44–54, Washington, DC, USA,
2009. IEEE Computer Society.

[8] M. Govett, J. Middlecoff, and T. Henderson. Directive-based
parallelization of the nim weather model for gpus. In Pro-
ceedings of the First Workshop on Accelerator Programming
Using Directives, WACCPD ’14, pages 55–61, Piscataway,
NJ, USA, 2014. IEEE Press.

[9] T. Hoshino, N. Maruyama, and S. Matsuoka. An openacc
extension for data layout transformation. In Proceedings
of the First Workshop on Accelerator Programming Using
Directives, WACCPD ’14, pages 12–18, Piscataway, NJ,
USA, 2014. IEEE Press.

[10] T. Hoshino, N. Maruyama, S. Matsuoka, and R. Takaki. Cuda
vs openacc: Performance case studies with kernel benchmarks
and a memory-bound cfd application. In Cluster, Cloud and
Grid Computing (CCGrid), 2013 13th IEEE/ACM Interna-
tional Symposium on, pages 136–143, May 2013.

[11] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter.
Thread cluster memory scheduling: Exploiting differences in
memory access behavior. In Microarchitecture (MICRO),
2010 43rd Annual IEEE/ACM International Symposium on,
pages 65–76, Dec 2010.

[12] J. Kraus, M. Schlottke, A. Adinetz, and D. Pleiter. Accelerat-
ing a c++ cfd code with openacc. In Proceedings of the First
Workshop on Accelerator Programming Using Directives,
WACCPD ’14, pages 47–54, Piscataway, NJ, USA, 2014.
IEEE Press.

[13] A. Lashgar, A. Majidi, and A. Baniasadi. Ipmacc: Open
source openacc to cuda/opencl translator. arxiv:1412.1127v1
[cs.pl].

[14] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and
S. Mahlke. Sage: Self-tuning approximation for graphics
engines. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-46,
pages 13–24, New York, NY, USA, 2013. ACM.

[15] N. Whitehead and A. Fit-Florea. Precision & performance:
Floating point and ieee 754 compliance for nvidia gpus.



[16] S. Wienke, P. Springer, C. Terboven, and D. an Mey. Openacc:
First experiences with real-world applications. In Proceedings
of the 18th International Conference on Parallel Process-
ing, Euro-Par’12, pages 859–870, Berlin, Heidelberg, 2012.
Springer-Verlag.

[17] G. L. Yuan, A. Bakhoda, and T. M. Aamodt. Complexity
effective memory access scheduling for many-core accelerator
architectures. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 34–44.
ACM, 2009.


