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Abstract—OpenACC’s programming model presents a simple
interface to programmers, offering a trade-off between perfor-
mance and development effort. OpenACC relies on compiler
technologies to generate efficient code and optimize for per-
formance. Among the difficult to implement directives, is the
cache directive. The cache directive allows the programmer to
utilize accelerator’s hardware- or software-managed caches by
passing hints to the compiler. In this paper, we investigate the
implementation aspect of cache directive under NVIDIA-like
GPUs and propose optimizations for the CUDA backend. We use
CUDA’s shared memory as the software-managed cache space.
We first show that a straightforward implementation can be
very inefficient, and downgrade performance. We investigate the
differences between this implementation and hand-written CUDA
alternatives and introduce the following optimizations to bridge
the performance gap between the two: i) improving occupancy
by sharing the cache among several parallel threads and ii)
optimizing cache fetch and write routines via parallelization and
minimizing control flow. We present compiler passes to apply
these optimizations. Investigating three test cases, we show that
the best cache directive implementation can perform very close
to hand-written CUDA equivalent and improve performance up
to 2.18X (compared to the baseline OpenACC.)

Index Terms—OpenACC, Cache memory, CUDA, Software-
managed cache, Performance.

I. INTRODUCTION

The OpenACC standard introduces directives, API, and
the environment for developing applications for accelerators.
Most of OpenACC directives and clauses map to API calls
of low-level accelerator programming models, like CUDA1.
OpenACC can be viewed as a high-level programming layer
over low-level accelerator programming models, simplify-
ing accelerators’ software interface. Compared to low-level
programming models, OpenACC reduces development effort
significantly, as measured up to 11.9X in terms of words of
code by a previous work [1]. On the other hand, OpenACC
applications can run much slower than the CUDA versions.
This is because CUDA programmers can harness all accelera-
tor resources and apply advanced optimizations. Examples of
these optimizations are exploiting CUDA shared memory as a
fast on-chip cache for inter- thread block communication [2]
and CUDA texture or constant cache for improving memory

1While we focus on CUDA in this paper, most of the discussions apply to
OpenCL as well.

bandwidth. OpenACC, however, mainly relies on the compiler
to apply low-level optimizations. This is due to the fact
that programmers are limited by the notation of OpenACC,
which centers around expressing parallelism. Therefore, for
OpenACC to be competitive with CUDA in high-performance
computing, developing compiler optimizations are crucial.

In this work, we investigate the compiler aspect of imple-
menting the cache directive. We study various implementa-
tions and optimization opportunities. We start with presenting
ineffectiveness of a straightforward implementation. We show
the mapping of parallel loop iterations to CUDA threads
can be configured to share the cache among several loop
iterations. This, in respect, improves cache utilization and
accelerator occupancy, yielding a significant speedup. We also
present optimizations for cache fetch routine and cache write
policies. We apply our optimizations and implement a cache
directive, performing close to the hand-written CUDA version.
In summary, we make the following contributions:

• To the best of our knowledge, this is the first work inves-
tigating the implementation aspect of the cache directive.
We show that a naïve implementation hardly improves
performance (presented in Section II). We provide better
understanding regarding implementation challenges and
list compile-time optimizations and opportunities to en-
hance performance (presented in Section IV).

• We introduce three methods for implementing the cache
directive (presented in Section III). One of the implemen-
tations emulates hardware cache. The other two cache
a range of values. Methods differ in cache utilization
and access overhead. Employing all suggested optimiza-
tions on top of our best solution delivers performance
comparable to that provided by the hand-written CUDA
equivalent.

• We introduce microbenchmarking to understand the per-
formance of shared memory in CUDA-capable GPUs
(presented in Section V-A). We show that the shared
memory layout (2D or flattened) has minor impact on
performance. Also we present how using a small padding
in shared memory allocation can vastly resolve bank
conflicts. We use our findings in optimizing the cache
directive implementation.

• We evaluate our suggested implementations under threeWACCPD16; Salt Lake City, Utah, USA; November 2016
978-1-5090-6152-5/16/$31.00 ©2016 IEEE



benchmarks (presented in Section V-B): matrix-matrix
multiplication, N-Body simulation, and Jacobi iterative
method. For each benchmark we compare performance of
the proposed cache directive implementations to baseline
OpenACC and hand-written CUDA. We also estimate
development effort of OpenACC and CUDA versions.
We improve the performance of OpenACC up to 2.18X,
and almost match that of CUDA (while reducing the
development effort by 24%).

II. BACKGROUND AND MOTIVATION

OpenACC API is designed to program various accelerators
with possibly different cache/memory hierarchies. Generally,
the compiler is responsible for generating an efficient code to
take advantage of the hierarchies. Static compiler passes can
figure out specific variables or subarrays with an opportunity
for caching. However, as static passes are limited, OpenACC
API also offers a directive, allowing programmers to hint the
compiler. The cache directive is provided to facilitate such
compiler hints. The directive is not accelerator-specific and is
abstracted in a general form. These hints specify the range of
data showing strong locality within individual iterations of the
outer parallel loop, which might benefit from caching.

The cache directive is used within a parallel or kernels
region. The directive usually associates with a for loop (where
the locality is formed) and can be used over or in the loop.
The line below shows the syntax of the directive in C/C++:

#pragma acc cache(var-list)
{

\\ cache region
}
var-list passes the list of variables and subarrays. Subarray

specifies a particular range from an array with the following
syntax:

arr[lower:length]
lower specifies the start index and length specifies the

number of elements that should also be cached. lower is
derived from constant and loop invariant symbols. This can
also be an offset of the for loop induction variable. length is
constant. Cache region is the code range where data should
be cached.

Listing 1. cache directive; one-dimensional stencil.
1 #pragma acc data copy(a[0:LEN],b[0:LEN])
2 for (n=0; n<K; ++n){
3 #pragma acc parallel loop
4 for ( i=1; i<LEN−1; ++i){
5 int lower = i−1, upper = i+1;
6 float sum = 0;
7 #pragma acc cache(a[( i−1):3])
8 for ( j=lower; j<=upper; ++j){
9 sum += a[j ];

10 }
11 b[ i ] = sum/(upper−lower+1);
12 }
13 float *tmp=a; a=b; b=tmp;
14 }
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Fig. 1. Comparing naïve and optimized cache implementations under 1D
stencil kernel listed in Listing 1 (30-element radius, 1K, 16K, 128K, and 2M
elements.)

Listing 1 shows an example of the cache directive. The
example is based on one-dimensional stencil algorithm. 1D
stencil smooths the values of array iteratively, repeating for
certain number of iterations, here K times. In this example, the
array length and 1D stencil radius are LEN and one element,
respectively. The new value of every element is calculated
as the average of three elements; the element and right and
left neighbors. The programmer can provide a hint to the
compiler to highlight this spatial locality within each iteration
of the parallel loop. On line #7, the cache directive hints the
compiler that each iteration of the loop requires three elements
of a[], starting from i-1. Provided with this hint, the compiler
can potentially cache this data in registers, software-managed
cache, or read-only cache (depending on the target). Also
depending on the accelerator-specific optimization strategies,
the compiler can ignore the hint, which is not the focus of this
study.

Figure 1 compares the performance of two different cache
directive implementations (naïve and optimized) for the code
listed in Listing 1. These two implementations are compared
to the baseline (which does not use the cache directive). The
naïve implementation isolates cache space to each parallel it-
eration of the loop. The optimized implementation is equipped
with optimizations later introduced in this paper and exploits
the opportunity for sharing cached elements among parallel
iterations. Consequently, optimized delivers more efficient
cache implementation through better occupancy, cache shar-
ing, and initial fetch parallelization. We explain each of these
optimizations in the rest of the paper. This figure emphasizes
the importance of optimizing cache implementation.

III. IMPLEMENTATIONS

In this section, we present three cache directive implemen-
tations for accelerators employing software-managed cache.
We discuss methods for the case where the list of variables
consists of subarrays2. For implementing the cache directive,
the compiler requires two pieces of information: i) the range
of the data to be cached and ii) the array accesses (within
the cache region) that their array index value falls within the

2Simplified version of presented methods are applicable for scalar variables.



subarray range3. Using the information provided through the
directive, the compiler knows the subarray; data that should
be cached. To gather the second piece of information, the
compiler must examine the index of every array access in
the cache region. If the compiler could statically assure that
the index falls within the cache range, the array access might
simply be replaced by a cache access in the code. Otherwise,
the compiler should generate a code to decide to fetch from the
cache or global memory on-the-fly. Therefore, depending on
the code, the compiler may generate a different control flow.
The methods that we discuss differ in how they make this
dynamic decision. All implementations guarantee to fetch the
data from cache, as long as the value of indexes falls within
the specified range.

The first method is an emulation of hardware-managed
cache through software-managed cache. To this end, data and
tag arrays are maintained in the software-managed cache.
Operations of hardware cache is emulated using these two
arrays. The second and third methods are range-based caching.
The second method stores the lower and length specifiers and
checks if the value of the index falls within this range. The
third method assumes all indexes fall into the fetched range
and uses a simple operation to map array indexes to cache
locations. Below we elaborate on these methods.

A. Emulating Hardware Cache (EHC)

Overview. Two arrays are allocated in the software-
managed cache; data and tag. Data array stores the elements of
the subarray. Tag array stores the indexes of subarray elements
that are currently cached. Tag array can be direct-mapped, set-
associative, or fully-associative to allow caching the entire or
part of the subarray transparently. The decision depends on
the subarray size and accelerator capabilities.

Pros and cons. The main advantage of this method is
the ability to adapt to the available cache size. If the cache
directive demands a large space and the accelerator’s cache
size is small, this method allows storing only portion of
the subarray (other methods might ignore the directive in
this case). There are two disadvantages with this method
though. First, storing the tag array in the software-managed
cache lowers the occupancy of the accelerator and limits
concurrent threads. Second, at least two cache accesses (tag
plus data) are made for every array access, increasing the
read/write delay significantly. In terms of operations, each
global memory access is replaced by two cache accesses
and few other logical/arithmetic and control operations. This
significant overhead impairs the performance advantages as the
total latency of the cache hit can exceed the global memory
latency (depending on the accelerator’s design).

B. Range-based Conservative (RBC)

Overview. One array and two pointers are allocated in the
software-managed cache. The array stores the subarray. Two
pointers keep the range of indexes stored in the cache. One

3We assume pointer aliasing is not the case and pointers are declared as
restricted type in the accelerator region, using C’s restrict keyword.

of the pointers points to the start index and the other points
to the end index (or the offset from the start). To check if the
array index falls within the subarray range or not, the index is
checked against the range kept in pointers. Two comparisons
evaluate this; index ≥ start && index > end. If the condition
holds, data is fetched from the cache, otherwise from global
memory. Moreover, if the condition holds, the index should be
mapped from global memory to cache space. The operation
for this mapping is a subtraction (index - start).

Pros and cons. The cache directive always points to a stride
of data. This method exploits the fact that elements of subarray
are a row of consequent elements from the original array and
minimizes the overhead for maintaining the track of the cached
data (compared to EHC). The method stores two pointers
pointing to the start and end of the stride. The method can be
extended to multi-dimensional subarrays by storing a pair of
pointers per dimension. The only disadvantage of this method
is the performance overhead of the control flow statement
generated for checking whether the index falls within the range
of stride or not. This control statement might be an expensive
operation for multi-dimensional subarrays (2 + 1 logical ops.
for 1D, 4 + 3 logical ops. for 2D, etc.).

Listing 2. Implementation of Emulating Hardware Cache (EHC) in CUDA.
1 __device__ void __cache_fetch(PTRTYPE* g_ptr,
2 PTRTYPE* c_ptr, unsigned st_idx, unsigned en_idx,
3 unsigned* ctag_ptr ){
4 for (unsigned i=st_idx ; i<en_idx; i++){
5 unsigned cache_idx=acc_idx&0x0ff; // direct map
6 c_ptr [cache_idx]=g_ptr [ i ];
7 ctag_ptr [cache_idx]=i ;
8 }
9 }

10 __device__ PTRTYPE __cache_read(PTRTYPE* g_ptr,
11 PTRTYPE* c_ptr, unsigned st_idx, unsigned en_idx,
12 unsigned acc_idx , unsigned* ctag_ptr ){
13 unsigned cache_idx=acc_idx&0x0ff; // direct map
14 if ( ctag_ptr [cache_idx]==acc_idx){
15 return c_ptr [cache_idx ];
16 }else{
17 c_ptr [cache_idx]=g_ptr [acc_idx ];
18 ctag_ptr [cache_idx]=acc_idx;
19 return c_ptr [cache_idx ];
20 }
21 }
22 __device__ void __cache_write(PTRTYPE* g_ptr,
23 PTRTYPE* c_ptr, unsigned st_idx, unsigned en_idx,
24 unsigned acc_idx , PTRTYPE value, unsigned* ctag_ptr){
25 unsigned cache_idx=acc_idx&0x0ff; // direct map
26 if ( ctag_ptr [cache_idx]!=acc_idx)
27 ctag_ptr [cache_idx]=acc_idx;
28 g_ptr [acc_idx] =c_ptr[cache_idx] =value;
29 }

C. Range-based Intelligent (RBI)

Overview. This method improves RBC one step further and
assumes array indexes always fall within the subarray range.
This avoids the costly control flow statements for evaluating
whether the data is in the cache or not. The compiler may use



this method if the compiler passes are able to find the range
of values of the index.

Pros and cons. This method has significant performance
advantage over RBC as it avoids the costly control statements
for checking if the data exists in the cache or not. Assuring
that the index always falls within the fetched stride was not
a trivial compiler pass in the past. The restrictions added in
the latest OpenACC version have addressed this by limiting
the subarray references. Accordingly, the latest version of
OpenACC (2.5 released in November 2015) adds a restriction
to cache directive requiring all references to the subarray lie
within the region being cached[3]. This essentially means RBI
can be used with all applications that follow OpenACC 2.5.

Listing 3. Implementation of Range-based Conservative (RBC) in CUDA.
1 __device__ void __cache_fetch(PTRTYPE* g_ptr,
2 PTRTYPE* c_ptr, unsigned st_idx, unsigned en_idx){
3 for (unsigned i=st_idx ; i<en_idx; i++)
4 c_ptr [ i−st_idx]=g_ptr[ i ];
5 }
6 __device__ PTRTYPE __cache_read(PTRTYPE* g_ptr,
7 PTRTYPE* c_ptr, unsigned st_idx, unsigned en_idx,
8 unsigned acc_idx){
9 if (acc_idx>=st_idx && acc_idx<en_idx){

10 unsigned cache_idx=acc_idx−st_idx;
11 return c_ptr [cache_idx ];
12 }else
13 return g_ptr [acc_idx ];
14 }
15 __device__ void __cache_write(PTRTYPE* g_ptr,
16 PTRTYPE* c_ptr, unsigned st_idx, unsigned en_idx,
17 unsigned acc_idx , PTRTYPE value){
18 if (acc_idx>=st_idx && acc_idx<en_idx){
19 unsigned cache_idx=acc_idx−st_idx;
20 c_ptr [cache_idx]=value ;
21 }
22 g_ptr [acc_idx]=value ;
23 }

D. Example

Listing 2 and 3 show the CUDA implementations of the
methods explained above. Three procedures are implemented
for each method: i) __cache_fetch(), ii) __cache_read(), and
iii) __cache_write()4. During generating the accelerator code,
__cache_fetch() is called early before the cache region starts.
This procedure is responsible for fetching the data into the
cache. Within the cache region, the compiler replaces every
array read with __cache_read() call and array write statement
with __cache_write() call. For these implementations, we
assume a write-through cache.

Listing 2 shows the CUDA implementation of EHC where
the tag array models a direct-map cache. For this example, we
assume a 256-entry cache. In this case, mapping from global
memory indexes to cache space is a single logical operation.
Listing 3 shows the CUDA implementation of RBC. RBI
implementation is the same as Listing 3, except the control
statement in __cache_read() and __cache_write() is removed

4As a performance issue, these procedures are declared inline to avoid
procedure calls within the accelerator region.

as it is always not-taken. In this Listing, the mapping is an
arithmetic operation; subtracting index from the start pointer.
__cache_fetch() routine in all implementation has a for loop
statement. Later in Section IV, we discuss opportunities to
accelerate this loop through parallelization.

IV. IMPLEMENTATION OPTIMIZATION

Various optimizations can be applied to maximize perfor-
mance in cache directive implementations. Below we review
possible opportunities in optimizing cache fetch routine, cache
sharing, cache writes, and minimizing index mapping over-
head.

A. Cache Fetch Routine

The cache fetch routine is called before cache region starts.
This is done once per parallel instance of the loop which the
cache directive is associated with5. If the cache region has long
latency, this routine’s performance may not be the limiting
factor. Otherwise, if the cache region is short, the performance
of this routine is critical to the overall performance.

Performing our evaluations under NVIDIA GPUs, we found
that minimizing control flow statements comes with significant
performance advantage. The fetch routine has a for loop
statement (as presented earlier in Section III-D) which imposes
control flow overhead. Loop unrolling can be employed to
reduce this overhead, as the length of the loop is a compile-
time constant (equal to the length of the subarray). Also the
compiler can reduce this overhead further by sharing a single
for loop among multiple subarray fetches. Compiler heuristics
can decide if the loop can be shared among multiple subarrays.
For example, the compiler can read the cache directive and
group the subarrays having equal length. Subsequently the
grouped subarrays can share the same for loop, as the number
of iterations for fetching the data is the same for all of them.

Another opportunity to optimize the for loop is to parallelize
the loop. A number of parallel threads, equal to the size of
the thread block, can be employed to fetch the data into the
software-managed cache. If the compiler is not using parallel
threads for another task, parallel fetch can simply achieve this.
However, if parallel threads have already been employed to
execute parallel tasks, then the compiler should assure that
while threads collaborate for fetching the data, they maintain
a separated view of the cache, specially in the case of cache
writes. We explain this further in Section IV-B.

B. Cache Sharing

The cache directive is located within one (or more) parallel
loop(s) (also referred to as outer parallel loops) and the cache
space should be allocated once per parallel instance. The com-
piler can optimize cache utilization by unifying the allocations
of common data and sharing them among parallel iterations.
When it comes to cache directive implementations in CUDA,
sharing data between parallel iterations is efficiently feasible
by mapping parallel iterations (in OpenACC) to threads of

5The fetch routine might be called multiple times, if located in a sequential
loop.



the same thread block (in CUDA). Therefore, to seize this
opportunity, the cache directive implementation closely relates
to the mapping of outer parallel loops to CUDA threads.
Notice that iterations of parallel loops located in the cache
directive already share the same data. The challenge is to
find data sharing among the iterations of outer parallel loops
containing the cache directive. Listing 4 clarifies outer and
inner loops in an example. Below we discuss different cases
where the compiler may find sharing among these iterations
and seize the opportunity.

Listing 4. Example of inner and outer parallel loops around cache.
1 #pragma acc parallel loop
2 for ( i=0; i<N; i++){ // OUTER LOOP:
3 // depending on X and Y, the subarray
4 // may or may not be shared among iterations
5 #pragma acc cache(subarray[X:Y])
6 { // beginning of cache region
7 #pragma acc loop
8 for ( j=0; j<N; j++){ // INNER LOOP:
9 // the subarray is shared among all iterations

10 }
11 } // end of cache region
12 }

OpenACC API accepts hints from the programmer to ex-
plicitly specify the mapping of loop iterations to different
thread blocks (worker clause) or the same thread block (vector
clause). Since these clauses affect the code that the compiler
injects, to provide better understanding, we study two cases: i)
implicit mapping (the option is left to the compiler to decide)
and ii) explicit mapping (the programmer suggests specific
mapping).

1) Case I: implicit mapping.: If the mapping option is left
to the compiler, the task is to map outer parallel loops to thread
hierarchies with the constraint of maximizing the subarray
overlap among threads of the thread block. This is followed
by sharing this data among all threads of the thread block
through CUDA shared memory. The problem inputs are i) the
number of outer parallel loops, ii) the number of iterations per
loop, iii) increment steps of outer parallel loops, iv) specifiers
in the cache directive specifying the range of subarray, and v)
number of dimensions in the subarray. The problem output is
the mapping of loop iterations to CUDA threads. The mapping
should specify the total number of threads, number of threads
in thread block, and tasks per thread (which can be calculated
from the first two). From the target mapping, the compiler
finds the common data among threads of the thread block and
injects code to i) calculate start and end pointers for each
thread (if RBC or RBI is used) and ii) fetch the common data
collaboratively in parallel using threads of the thread block.
We suggest the following compiler passes as solutions to this
problem.

One-dimensional subarray. Below are the steps of the pass
for one-dimensional subarrays and one outer parallel loop:

I) Repeat steps II to V for each subarray listed in the
cache directive. II) Read the specifiers for the subarray (e.g.
subarr[lower:length]); lower and length. III) Construct the

AST tree of lower6 and label variables that are iterators of the
outer parallel loops as ITR. IV) If the equivalent expression
of the AST tree is in the form of ITR + const (const is an
expression of non-ITR variables) and increment step of ITR
loop is +1 or −1, the compiler may use the following mapping
to share the subarray7: Map every iteration of ITR parallel
loop to one thread (1st iteration to 1st thread, 2nd iteration
to 2nd thread, etc. one task per thread). Thread block shares
length+blockDim.x−1 elements of the subarray among the
threads of the thread block through the shared memory (the
size of thread block can be adjusted to maximize accelerator’s
occupancy, e.g. use default 256.). For RBC and RBI, start
and end pointers should be calculated. The start pointer of
subarray for each thread equals to ITR − threadIdx.x (if
the loop step is +1) or ITR+ threadIdx.x (if the loop step
is −1). The end pointer of subarray for each thread is equal
to start+ (length+ blockDim.x− 1). The __cache_fetch()
routine, in Listing 2 and 3, can be parallelized by simply
setting the loop initial value to st_idx+ threadIdx.x and the
loop step to + = blockDim.x. V) If the equivalent expression
of the AST tree is not in the form mentioned in IV, skip the
cache sharing optimization.

The pass above can be simply extended to support a one-
dimensional subarray and two or more outer parallel loops.
The difference is to map each outer parallel loop along a
unique dimension of the CUDA grid. Also wherever blockDim
and threadIdx is used above, instead of x dimension, the
dimension that corresponds to the ITR should be used (x, y,
or z).

Two-dimensional subarray. Steps of the pass for two-
dimensional subarrays and two outer parallel loops is very
similar but scales to two dimensions of the subarray and thread
block. Below we list the pass:

I) Repeat steps II to V for each subarray listed in the
cache directive. II) Read the specifiers for the subarray (e.g.
subarr [lower0:length0] [lower1:length1]); lower0, length0,
lower1, and length1. III) Construct the AST trees of lower0
and lower1 and label variables. Variables that are iterators
of the outer parallel loops are labeled as ITR0, ITR1, etc.
IV) If the equivalent expressions of the AST trees of lower0
and lower1 are in the form of ITR + const (const is an
expression of non-ITR variables), increment step of ITR loop
is +1 or −1, and ITR variable in lower0 is different from the
one in lower1, the compiler may use the following mapping:
Map each parallel loop along a dimension of the grid and
map every iteration of the loops to one thread (one task
per thread). Threads of every thread block share (length0 +
blockDim.x − 1) × (length1 + blockDim.y − 1) elements
for the two-dimensional subarray in the shared memory. The
size of thread block can be adjusted to maximize accelerator’s
occupancy, e.g. use default 16 threads along x and 16 threads
along y. For RBC and RBI, four pointers should be calculated
(start0, end0, start1, and end1) to track both dimensions of the

6Based on the cache directive restrictions, length is constant and lower is
the real parameters left for the compiler to analyze.

7Same mapping can be used if the AST tree is in the form of const.



subarray. The start0 pointer of the subarray for each thread
is equal to ITR + const − threadIdx.x (if the loop step
is +1) or ITR + const + threadIdx.x (if the loop step is
−1). Similarly, the start1 pointer of subarray for each thread
is equal to ITR + const − threadIdx.y (if the loop step
is +1) or ITR + const + threadIdx.y (if the loop step
is −1). The end0 and end1 pointers of subarray for each
thread are equal to start0 + (length0 + blockDim.x − 1)
and start1 + (length1 + blockDim.y − 1), respectively. The
__cache_fetch() routine, in Listing 2 to 3, should be modified
by adding pointers of the second dimension of the subarray in
the arguments. Also one additional loop should be added to
iterate and fetch the second dimension of the subarray. Two
loops in this routine can be parallelized simply by setting
the initial values of the loops to lower0 + threadIdx.x and
lower1 + threadIdx.y, respectively and the loop steps to
+ = blockDim.x and + = blockDim.y, respectively. V) If
the equivalent expression of the AST trees is not in the form
mentioned in IV, skip the cache sharing optimization.

The pass above can simply be extended to support two-
dimensional subarrays and three or more outer parallel loops.
The difference is to map each outer parallel loop along one
dimension of the CUDA grid and use the respective dimension
of blockDim and threadIdx instead of x and y accordingly.

2) Case II: explicit mapping.: In this case, the compiler
should generate a specific mapping of parallel loops to CUDA
thread hierarchies, forced by vector and worker clauses. This
can limit the range of compiler optimizations in sharing the
cache space among threads. Generally, as long as the vector
and worker clauses are not conflicting with the compiler passes
in Section IV-B1, the compiler proceeds and exploits the
sharing opportunity. The conflict mostly occurs when worker
clause is used. worker clause asks the compiler to map each
iteration to a thread block. This can conflict with the compiler
passes presented above, if the compiler decides to map this
loop to threads of the thread block. In the case of conflict, the
compiler can limit the sharing range, e.g. sharing only across
one dimension of the grid and ignoring the sharing along the
worker loop, or even ignoring the sharing optimization, in the
worst case.

C. Cache Write Policy

Writing to the subarray in the cache region invokes the write
routine. We assume two alternative policies for cache write:
write-back and write-through. Write-back buffers cache writes
and writes final changes back to DRAM at the end of the
cache region. Write-through writes every intermediate write to
both cache and global memory. Write-back tends to perform
better under dense and regular write patterns whereas write-
through performs better under sparse irregular write patterns.
We compare performance of these two implementations in
Section V-C.

If the compiler implements write-back cache, an additional
routine should be invoked at the end of the cache region to
write the dirty content of the cache to global memory. For
tracking the dirty lines, the compiler can decide to i) keep track

of the dirty lines through a mask or ii) assume all the lines
are dirty. Although keeping track of dirty lines can reduce the
total amount of write operations, the compiler can instead use
the brute-force write-back on the GPUs for two reasons. First,
tracking dirty lines demands extra space from the software-
manage cache to store the dirty mask. This, in turn, lowers the
occupancy of GPU. Second, the write-back routine can include
extra control flow statements to filter out dirty lines. These
control flow statements can harm performance (e.g. limiting
ILP and loop unrolling). On the other hand, employing a dirty
mask is preferred, if the size of the cache is large. In this
case, the dirty mask version is more efficient than the brute-
force approach. In this paper we assume brute-force write-back
cache.

D. Index Mapping

As we discussed in Section III, mapping global memory
indexes to shared memory indexes involves a few operations.
To mitigate this overhead, the compiler can allocate a register
to store the output of operations for the life time of the cache
region, if the value of index is not changing in the cache
region. The compiler can also reuse this register for other
array accesses, if the array indexes have the same value. This
optimization saves register usage and mitigates index mapping
overhead.

V. EXPERIMENTAL RESULTS

In this section, we first report the experiments performed to
understand shared memory and optimize our implementation
on the target GPU. We use IPMACC compiler [4] for compil-
ing OpenACC applications and implementing the cache direc-
tive. IPMACC framework translates OpenACC to CUDA and
uses NVIDIA nvcc compiler to generate GPU binaries. Then
we study the performance of methods introduced in Section
III, under three test cases. Finally, we investigate performance
of different cache write policies. We run evaluations under
NVIDIA Tesla K20c GPU. The execution time of the kernel
is measured by nvprof [5]. Every number is harmonic mean
of 30 independent samples. To the best of our knowledge,
currently there are no commercial or open source OpenACC
compilers that support the cache directive. Therefore, we are
unable to compare performance of our implementation to other
studies8.

A. Cache Performance Sensitivity

Software-managed cache in NVIDIA GPUs (also called
shared memory) employs multiple banks to deliver high
bandwidth. Every generation of NVIDIA GPUs has a certain
configuration of shared memory; namely a specific number of
banks and the bank line size. A bank conflict occurs once a

8We studied several compilers (i.e. PGI and Omni) but found none of them
supporting the cache directive. We compiled the kernels with PGI Accelerator
compiler 16.1 and found out that the compiler ignores the cache directive and
does not generate shared memory CUDA code. We also investigated several
open source frameworks, e.g. RoseACC, accULL, and Omni compiler, of
which none had an implementation for the cache directive.



Fig. 2. Comparing execution time of kernel under various shared memory configurations.

warp9 executes a shared memory instruction and threads of
a warp need different rows of the same bank. Bank conflicts
cause access serialization if the bank does not have enough
read/write ports to deliver data in parallel. We develop a
CUDA microbenchmark to evaluate the impact of several
parameters on bank conflict. Knowing these impacts delivers
deeper insight on optimizing the cache directive implementa-
tions and enhancing their performance. This test should run
separately for every backend supported by the compiler to
allow hardware-specific optimizations. Below we first review
the microbenchmark structure, followed by presenting results
obtained on the GPU of this study. Finally we summarize the
findings that help optimizing the cache directive implementa-
tion.

1) Microbenchmark setup: We assume one two-
dimensional shared memory array per thread block. We
also assume two-dimensional thread blocks. We develop a
simple kernel in which every thread reads four locations of
shared memory and writes one location. These reads/writes
are in a loop iterated several times. The code is shown in
Listing 5. We report the execution time of this kernel and
evaluate the impact of the following parameters in the kernel
body:

• Datatype size (TYPE): The datatype size of shared
memory array is the number of bytes allocated for each
element of array. Variations in datatype size impact bank
conflict since it determines the layout of array in the
shared memory (e.g. one element per bank, two elements
per bank, etc.).

• 2D array allocation: We investigate two alternatives in
allocating 2D shared memory: 2D array notation or 1D
array notation (flattened notation). 2D array notation is
simpler in indexing and code readability. We are also
interested to understand whether flattened notation has
a different layout in the shared memory from 2D array.

• Padding (PAD): When the size of shared memory array
is multiple of memory banks, adding a small padding
to the array can mitigate the bank conflict. The padding

9Group of threads executing instructions in lock-step over the SIMD.

increases the row pitch, spreading the columns of a row
across different banks.

• Access pattern: Since bank conflict only occurs among
the threads of the same warp, it is important to mitigate
bank conflict algorithmically. We evaluate the impact of
these algorithmic optimizations by mapping threads of
the thread block to different dimensions of the shared
memory array. Operating in XY mapping, threads along
the x dimension of the thread block are mapped to the first
dimension of the shared memory array and threads along
the y dimension are mapped to the second dimension. YX
mapping reverses this as threads along x and y dimensions
are mapped to the second and first dimensions of the
array, respectively.

• Iterations (ITER): Number of iterations of the loop in
the kernel body. This number indicates the ratio of shared
memory accesses to global memory accesses.

2) Results: Figure 2 reports the execution time of the kernel
in Listing 5 under various configurations. Bars report the
execution time for three different ITERs (1, 2, and 4), two
TYPEs (4-byte integer and 8-byte floating-point), two array
allocation schemes (2D and flattened 2D), two shared memory
access patterns (XY and YX), and two padding sizes (zero and
one).

As shown in the figure, TYPE has modest impact on the
execution time. Also the allocation scheme has minor impact
on performance. The latter suggests that the layout of 2D array
in the shared memory banks is similar to that of the flattened
2D array.

Access pattern, however, impacts performance significantly.
In this benchmark, YX mapping delivers a better performance
compared to XY. This is explained by how threads are grouped
into warps. Warps are occupied first by the threads along
the x dimension and then by the threads along y. Therefore
threads along x should access consequent words in order to
reduce shared memory bank conflict. This is precisely what
YX mapping does.

As shown in the figure, adding a padding to the array
can have an impact similar to that of access pattern tunings,
lowering the execution time roughly the same amount. Adding



a padding to the array can lower the execution time by 57%
and 56% under double and int, respectively. It should be noted
that under the cases where the array is padded there is still
room for improvement as evidenced by the results. Under one
padding, modifying the code algorithmically for reducing bank
conflict, as comparing XY to YX shows, can further lower the
execution time by 8% (for both int and double).

Increasing the number of iterations (ITER) increases the
importance of the shared memory performance in the overall
performance. For larger iterations, the impact of access pattern
and padding is more significant. For example, under one
iteration, the gap between zero-padding and one-padding is
23%. This gap grows to 37% and 55% under 2 and 4 iterations,
respectively.

3) Summary of findings: We make the following conclu-
sions from the findings presented in this section and use them
to optimize our implementations. First, the layout of 2D arrays
allocated in the shared memory is found to be the same
as flattened 2D arrays. Since no performance advantage is
found in using flattened 2D arrays, we use multi-dimensional
arrays for caching multi-dimensional subarrays to simplify
array indexing code generation. Second, our implementation
adjusts mapping of parallel loops to x and y dimensions of
the thread blocks with the goal of having threads along x
accessing consequent bytes. We use a heuristic to map the
most inner parallel loop to the x dimension of the grid. This
is due to the fact that, intuitively, the inner loop has stronger
locality and traverses arrays column-wise. Third, adding a
small padding can pay off if other compiler optimizations do
not allow mapping inner parallel loops over x dimension.

B. Test Cases

Here we investigate the cache directive under three different
benchmarks; matrix-matrix multiplication (GEMM), N-Body
simulation, and Jacobi iterative method. For each benchmark,
we compare the performance of four implementations10: i)
OpenACC without cache directive, ii) OpenACC plus cache
directive implemented using RBC, iii) OpenACC plus cache
directive implemented using RBI, and iv) hand-written CUDA
version. All cache-based implementations are optimized with
the parallel cache fetch and cache sharing optimizations dis-
cussed in Section IV.

We wrote all versions of GEMM and Jacobi. For N-Body
Simulation, we used the CUDA version available in GPU
Computing SDK [6] and modified the serial version available
there to obtain OpenACC versions. We did our best to hand-
optimize using the techniques that we are aware of. Table
I compares the development effort of GEMM, N-Body, and
Jacobi under OpenACC, OpenACC plus cache, and CUDA
implementations. Development effort is measured in terms
of the number of statements, including declaration, control,
loop, return, and assignment statements. Below we compare
the performance of these implementations.

10We found EHC implementation very slow and hence we avoid further
discussion on about it.

Listing 5. CUDA microbenchmark for understanding shared memory.
// compiled for different TYPE, ITER, PAD, XY
__global__ void kernel (TYPE *GLB, int size){

__shared__ int SHD[16+PAD] [16+PAD];
// mapping config to shared memory
# ifdef XY
int row=threadIdx.x, rows=blockDim.x;
int col=threadIdx .y, cols=blockDim.y;
#else
int row=threadIdx.y, rows=blockDim.y;
int col=threadIdx .x, cols=blockDim.x;
#endif
// fetch
int index=( threadIdx .x+blockIdx.x*blockDim.x)*size+

( threadIdx .y+blockIdx.y*blockDim.y);
SHD[row][col]=GLB[index];
// computation core
int S = (row==(rows−1))?row:row+1;
int N = (row==0) ?0 :row−1;
int W = (col==(cols−1))?col:col+1;
int E = (col==0) ?0 : col−1;
int k=0; TYPE sum=0;
for (k=0; k<ITER; k++){

sum=(SHD[row][col]+ SHD[S][col]+ SHD[N][col]+
SHD[row][E]+ SHD[row][W])*0.8;

__syncthreads () ; SHD[row][col]=sum; __syncthreads();
}
// write−back
GLB[index]=SHD[row][col];

}

TABLE I
DEVELOPMENT EFFORT OF THE BENCHMARKS UNDER OPENACC,

OPENACC PLUS CACHE, AND CUDA IMPLEMENTATIONS.

OpenACC OpenACC+cache CUDA
GEMM 84 94 116
N-Body 81 84 108
Jacobi 145 152 189

1) GEMM: Cache-based implementations (i and ii) iter-
atively fetch 16 × 16 tiles of two input matrices into the
software-managed cache using the cache directive and keep
the intermediate results (sum of products) in registers. The
CUDA version also implements the same algorithm using
shared memory notation. Figure 3 compares the performance
of these implementations under various square matrix sizes,
compared to the baseline OpenACC.

A similar trend can be observed under different input sizes.
RBI outperforms OpenACC by 2.18X. The gap between RBI
and CUDA is around 8%. RBC, RBI, and CUDA reduce the
global memory traffic significantly, compared to OpenACC.
By fetching the tiles of input matrices into software-managed
cache, these implementations maximize memory access coa-
lescing. Also these implementations exploit the locality among
neighbor threads to minimize redundant memory fetches. Us-
ing nvprof [5], we found that RBI reduces the number of global
memory loads by 12X (under 1024x1024 matrices), compared
to OpenACC (the very same improvement is observed under
RBC and CUDA too).
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Fig. 3. Comparing performance of four GEMM implementations under
different matrix sizes. For each bar group, bars from left to right represent
OpenACC without cache directive, OpenACC with cache directive imple-
mented using RBC, OpenACC with cache directive implemented using RBI,
and CUDA.

Using RBC, the compiler generates a code to check the
memory addresses dynamically and to find out if the address
falls within the subarray range or not. If the address falls
within the subarray range, the data is fetched from the cache.
Otherwise, the data is fetched from the global memory. Under
RBI, however, the compiler static passes assure that dynamic
memory accesses always fall in the subarray range (if vio-
lated, the program can generate incorrect output). Therefore,
dynamic checking for the address range is avoided. This
explains why RBI always performs faster than RBC. As
shown in Figure 3, RBC is 2.34-2.37X slower than RBI.
This gap is caused by RBC’s extra logical and control flow
instructions per memory access, negating the gain achieved
from using the software-managed cache. For the 2D subarray
of this benchmark, these extra instructions are one branch, four
comparisons, and three ANDs. We discuss this issue further
in Section VI.

2) N-Body simulation: Figure 4 compares four implemen-
tations of N-Body simulation under different problem sizes.
To improve performance using software-managed cache, inter-
action between masses are computed tile-by-tile. Bodies are
grouped into tiles and fetched into software-managed cache
one tile at a time. This lowers redundant global memory
instructions and DRAM accesses. RBI outperforms baseline
OpenACC by 95%-113%. While RBI performs very close to
CUDA, there is still a gap between them (nearly 9%). This
gap is mainly the result of efficient implementation of the
fetch routine in the CUDA version. RBC is unable to improve
performance of the baseline OpenACC. This is explained
by the overhead for accessing software-managed cache; i.e.,
assuring the address falls within the range of data existing in
the shared memory.

3) Jacobi iterative method: Figure 5 compares four imple-
mentations of Jacobi iterative method under different problem
sizes. Each thread in Jacobi reads nine neighbor elements
(3-by-3 tile) and updates the value of the center element.
Considering a two-dimensional matrix, calculations used by
neighbor elements share significant amount of input data (four
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Fig. 4. Comparing performance of four N-Body simulation implementations
under different number of bodies.
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Fig. 5. Comparing performance of four Jacobi iterative method implementa-
tions under different matrix sizes.

to six elements.) Fetching this data into software-managed
cache and sharing data among threads is one way to optimize
baseline OpenACC. We employ this in RBC, RBI, and CUDA
implementations. Although our analysis shows RBC lowers
global memory accesses, RBC harms overall performance
when compared to the baseline. This is explained by the
overhead (control flow and logical operations) of assuring
addresses fall within the range of the data fetched into the
shared memory. RBI removes this overhead and improves per-
formance of baseline OpenACC by 6-10%. Despited this we
observe a huge gap between RBI and CUDA. CUDA launches
thread blocks equal in size to the size of the data being used
by the thread block. RBI, however, launches thread blocks
equal in size to the size of the computations being performed
by the thread block. This results in the CUDA version using
slightly larger thread block size than RBI. Here threads at the
boarder of thread block are only used for fetching the data.
This reduces irregular control flow in the fetch routine. We
found that this can be effectively implemented in OpenACC
to reduce the gap between RBI and CUDA. However, we do
not investigate it further due to the high development effort
required (close to CUDA equivalent), which is not desirable
for high-level OpenACC.



C. Cache Write

We developed two synthetic workloads to investigate per-
formance of write-back and write-through policies. The first
workload’s write pattern is dense and regular. The workload
is of 1D Stencil type where each parallel work computes an
element in the output array, iteratively. In OpenACC terms,
all parallel iterations are active (forming the dense pattern)
and consequent iterations write consequent words (forming
the regular pattern). Every parallel work serially iterates for a
certain number of iterations (which is a run parameter) and
computes the value of the element iteratively. The second
workload is the same as the first, except that only a fraction of
threads are active (less than 2%) and only a fraction of serial
iterations perform write (less than 2%). This forms the sparse
pattern.

Parameters of these workloads are parallel iterations (total
number of work) and number of serial iterations within the
work. The number of serial iterations models the frequency
of cache writes. Sweeping this number from 4 to 4096, we
measure the performance of write-back and write-through
under various cache access frequencies.

Figure 6 compares write-back and write-through under the
two synthetic workloads described above (dense regular versus
sparse). Two problem sizes are reported for each workload,
128K and 4K parallel work. We observe a similar trend under
both workloads. When parallel work are massive (e.g. 128K
work), write-back is faster than write-through (Figure 6b and
6d). This is due to the fact that large amount of threads can
perfectly hide the latency of write-back’s final write routine.
When parallel work are small and write frequency is low
(e.g. left side of Figure 6a and 6c), write-through outperforms
write-back. For example in Figure 6a, write-through is faster
when write frequency is lower than 16. Going beyond 16,
write-back starts to catch up with write-through. This can
be explained by the higher rate of global memory writes
that write-through makes. For large write frequencies (e.g.
>64), write-through performs numerous redundant writes to
global memory. Write-back, in contrast, buffers intermediate
written values (in shared memory) and writes them all to
global memory once at the end of cache region. This reduces
the total global memory writes compared to write-through
and saves performance. As presented, the performance gap
between write-back and write-through increases from 7% to
34%, as write frequency increases.

VI. LIMITATIONS

In EHC, tag and data arrays should be kept consistent. This
limits the parallelism of software-managed cache operations,
specially write operations. For instance, if two threads miss
different data and want to fetch both into the same location,
synchronization is necessary. The synchronization overhead
can be significant as the only way to handle such scenarios is
to create a critical section or use atomic operations. Because
of this limitation, for performance goals, cache sharing opti-
mizations should be avoided on top of EHC. We exclude EHC
from evaluations as we did not find it competitive.

Fig. 6. Comparing execution time of kernel under various shared memory
configurations.

In RBC, __cache_read routine is the performance limiting
factor, listed in Listing 3. Investigating the CUDA assembly
of the kernel (in sass format), we found that the compiler
eliminates branches and instead uses predicates. This, on the
positive side, eliminates extra operations for managing the
post-dominator stack [7]. On the negative side, all instructions,
in both taken and not taken paths of the branch, are at least
fetched, decoded, and issued (some are executed as well).
The nvcc compiler uses a heuristic to employ predicates or
generate control flow statements (we describe this in Section
5.4.2 of [8]). For __cache_read routine of RBC, the heuristic
finds predicate advantageous. However, the overhead of the
predicate version is still huge and the routine is translated to
16 machine instructions. This explains why RBC is slow. We
believe further optimizations on RBC should be performed at
the machine level.

NVIDIA GPUs have alternative on-chip caches that can
be used by OpenACC compiler as the target of the cache
directive (e.g. constant memory and texture cache) or can be
used effortlessly as an alternative to the cache directive (L1
cache and read-only cache). Constant and texture memory are
limited to read-only data. If the subarray is written in the cache
region, constant and texture memory can not store the latest
value nor deliver the latest to subsequent requests. In addition,
the precision of the application could be affected if texture
memory is used. We evaluated the performance impact of L1
and read-only caches separately. We enforced read-only cache
using const and __restrict__ keywords and forced the GPU
to cache global accesses through nvcc compile flags (-Xptxas
-dlcm=ca) and found out that performance improvements are
less than 2%. This suggests that the advantages of using
software-managed cache is not limited to reading/writing data
from/to faster cache, but also accessing the data in fewer
transactions and in a coalescing-friendly way.



VII. RELATED WORK

Reyes et al. [9] developed accULL to execute OpenACC ap-
plications on accelerators. Two major components of accULL
are i) source to source compiler and ii) runtime library. The
runtime library routines are implemented in both CUDA and
OpenCL. Tian et al. [10] presented an OpenACC implementa-
tion built in OpenUH [11]. Using OpenUH, they evaluated the
performance of several alternatives in mapping loop iterations
to GPU parallel threads. Lee and Vetter [12] introduced a
framework for compiling, debugging, and profiling OpenACC
applications. They also introduced a new directive, openarc,
mapping OpenACC arrays to CUDA memory spaces. CUDA
memory spaces include shared memory and texture memory.
Hoshino et al. [13] investigated the impact of memory layout
on the performance of NVIDIA Kepler architecture, Intel
XeonPhi, and Intel Xeon processors. They limit their study
to directive-based programming languages. Their study shows
that having structure-of-arrays is much more efficient than
array-of-structures for Kepler and XeonPhi, while it has minor
impact on the performance of Xeon. They explain this by the
cache size of these processors (Kepler, XeonPhi, and Xeon
have 110 Bytes, 128 KBytes, and 1048 KBytes of cache per
hardware thread, respectively). They also introduced a new
directive for changing the data layout of multi-dimensional
arrays. Herdman et al. [1] compared the performance of
parallel and kernels constructs under various implementations
of OpenACC. They found that most vendors focus on one
of these constructs. Comparing the quickest construct of the
vendors, their performance variations found to be below 13%.

VIII. CONCLUSIONS

In this paper, we studied and addressed the challenges
facing the OpenACC cache directive in NVIDIA GPUs. We
used CUDA shared memory as the software-managed cache
space for implementing the directive. We presented three
different methods and several performance optimizations for
implementing the cache directive, among which sharing the
cache space among multiple threads and parallelizing cache
fetch and write routines are the most critical. Our results
also show that a) sharing the cache among several parallel
threads is essential to have a robust performance and b) write-
back cache outperforms write-through policy for the majority
of memory patterns. We also presented a CUDA shared
memory test to understand structural hazards and performance
bottlenecks of the shared memory. Evaluating under matrix-
matrix multiplication, N-Body simulation, and Jacobi method
iteration test cases, we presented an implementation that can
perform close to hand-written CUDA.
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