
Int. J. of High Performance Computing and Networking, Vol. x, No. x, 1–28 1

Efficient Implementation of OpenACC cache Directive
on NVIDIA GPUs

Ahmad Lashgar
ECE Department, University of Victoria
Address: Room A220, Engineering Lab Wing Building,
University of Victoria, Victoria, BC, Canada
Email: lashgar@uvic.ca

Amirali Baniasadi

ECE Department, University of Victoria
Address: Room 323, Engineering Office Wing Building,
University of Victoria, Victoria, BC, Canada
Email: amiralib@uvic.ca

Abstract: OpenACC’s programming model presents a simple interface to
programmers, offering a trade-off between performance and development effort.
OpenACC relies on compiler technologies to generate efficient code and
optimize for performance. The cache directive is among the challenging to
implement directives. The cache directive allows the programmer to utilize
accelerator’s hardware- or software-managed caches by passing hints to the
compiler. In this paper, we investigate the implementation aspect of cache
directive under NVIDIA-like GPUs and propose optimizations for the CUDA
backend. We use CUDA’s shared memory as the software-managed cache space.
We first show that a straightforward implementation can be very inefficient,
and undesirably downgrade performance. We investigate the differences between
this implementation and hand-written CUDA alternatives and introduce the
following optimizations to bridge the performance gap between the two: i)
improving occupancy by sharing the cache among several parallel threads and
ii) optimizing cache fetch and write routines via parallelization and minimizing
control flow. Investigating three test cases, we show that the best cache directive
implementation can perform very close to hand-written CUDA equivalent and
improve performance up to 2.4X (compared to the baseline OpenACC.)

Keywords: OpenACC; Cache memory; CUDA; Software-managed cache;
Performance;

Reference to this paper should be made as follows: Lashgar, A. and Baniasadi,
A. (2017) ‘Efficient Implementation of OpenACC cache Directive on NVIDIA
GPUs’, Int. Journal of High Performance Computing and Networks, Vol. x, No.
x, pp. xxx–xxx.

Biographical notes: Ahmad Lashgar is a fourth year PhD Candidate in
Electrical and Computer Engineering at University of Victoria, BC, Canada. For
completing his PhD, he works on developing hardware/software optimizations for
accelerators. He wrote IPMACC compiler for translating OpenACC applications
to CUDA, OpenCL, and ISPC backends.

Copyright © 201X Inderscience Enterprises Ltd.



2 A. Lashgar and A. Baniasadi

Amirali Baniasadi received his PhD degree in computer engineering from
Northwestern University, Evanston, IL, USA in 2002. He is currently professor
at the ECE department of University of Victoria, Victoria, BC. His current
research interests include high-level accelerator programming models, low-power
microarchitecture, complexity-effective design and clustered processors.

1 Introduction

The OpenACC standard introduces directives, API, and the environment for developing
applications for accelerators. Most of OpenACC directives and clauses map to API calls of
low-level accelerator programming models, like CUDA (while we focus on CUDA in this
paper, most of the discussions apply to OpenCL as well.). OpenACC can be viewed as a
high-level programming layer over low-level accelerator programming models, simplifying
accelerators’ software interface. Compared to low-level programming models, OpenACC
reduces development effort significantly, as measured up to 11.9X in terms of words of
code by a previous work [Herdman2012]. On the other hand, OpenACC applications
can run much slower than the CUDA versions. This is because CUDA programmers
can harness all accelerator resources and apply advanced optimizations. Examples of
these optimizations are exploiting CUDA shared memory as a fast on-chip cache for
inter- thread block communication [Lashgar2015] and CUDA texture or constant cache
for improving memory bandwidth. OpenACC, however, mainly relies on the compiler
to apply low-level optimizations. This is due to the fact that programmers are limited
by the notation of OpenACC, which centers around expressing parallelism. Therefore,
for OpenACC to be competitive with CUDA in high-performance computing, developing
compiler optimizations are crucial.

In this work, we investigate the compiler aspect of implementing the cache directive.
We study various implementations and optimization opportunities. We start with presenting
ineffectiveness of a straightforward implementation. We show the mapping of parallel
loop iterations to CUDA threads can be configured to share the cache among several loop
iterations. This, in respect, improves cache utilization and accelerator occupancy, yielding
a significant speedup. We also present optimizations for cache fetch routine and cache write
policies. We apply our optimizations and implement a cache directive, performing close to
the hand-written CUDA version. In summary, we make the following contributions:

• To the best of our knowledge, this is the first paper investigating the implementation
aspect of the cache directive. We show that a naïve implementation hardly improves
performance (presented in Section 2). We provide better understanding regarding
implementation challenges and list compile-time optimizations and opportunities to
enhance performance (presented in Section 4).

• We introduce three methods for implementing the cache directive (presented in Section
3). One of the implementations emulates hardware cache. The other two cache a range
of values. Methods differ in cache utilization and access overhead. Employing all
suggested optimizations on top of our best solution delivers performance comparable
to that provided by the hand-written CUDA equivalent.



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 3

• We introduce microbenchmarking to understand the performance of shared memory
in CUDA-capable GPUs (presented in Section 5.1). We show that the shared memory
layout (2D or flattened) has minor impact on performance. Also we present how using
a small padding in shared memory allocation can vastly resolve bank conflicts. We use
our findings in optimizing the cache directive implementation.

• We evaluate our suggested implementations under three benchmarks (presented in
Section 5.2): matrix-matrix multiplication, N-Body simulation, and Jacobi iterative
method. For each benchmark we compare performance of the proposed cache directive
implementations to baseline OpenACC and hand-written CUDA. We also estimate
development effort of OpenACC and CUDA versions. We improve the performance
of OpenACC up to 2.4X, and almost match that of CUDA (while reducing the
development effort by 24%).

The rest of this paper is organized as follows. In Section 2 we overview related
background and discuss inefficiencies of a naïve cache implementation. In Section 3 we
present our proposed implementations for the cache directive. In Section 4 we introduce
optimizations applicable to the proposed implementations. In Section 5 we evaluate
performance of the proposed methods. In Section 6 we discuss the limitations of our
approach. In Section 7 we overview related work. Finally, in Section 8 we offer concluding
remarks.

2 Background and Motivation

OpenACC API is designed to program various accelerators with possibly different
cache/memory hierarchies. Generally, the compiler is responsible for generating an efficient
code to take advantage of the hierarchies. Static compiler passes can figure out specific
variables or subarrays with an opportunity for caching. However, as static passes are limited,
OpenACC API also offers a directive, allowing programmers to hint the compiler. The
cache directive is provided to facilitate such compiler hints. The directive is not accelerator-
specific and is abstracted in a general form. These hints specify the range of data showing
strong locality within individual iterations of the outer parallel loop, which might benefit
from caching.

The cache directive is used within a parallel or kernels region. The directive associates
with a for loop (where the locality is formed) and can be used over or in the loop. The line
below shows the syntax of the directive in C/C++:

#pragma acc cache(var-list)
var-list passes the list of variables and subarrays. Subarray specifies a particular range

from an array with the following syntax:
arr[lower:length]
lower specifies the start index and length specifies the number of elements that should

also be cached. lower is derived from constant and loop invariant symbols. This can also
be an offset of the for loop induction variable. length is constant.

According to OpenACC specification [OpenACC2015], variables and subarrays listed
in var-list should be fetched into the highest level of the cache for the body of the loop.
We refer to the scope of the loop as cache region. In the cache region, all accesses to the
variables and subarrays listed in var-list should be served from the cache.



4 A. Lashgar and A. Baniasadi

Listing 1 shows an example of the cache directive. The example is based on one-
dimensional stencil algorithm. 1D stencil smooths the values of array iteratively, repeating
for certain number of iterations, here K times. In this example, the array length and 1D
stencil radius are LEN and one element, respectively. The new value of every element is
calculated as the average of three elements; the element and right and left neighbors. The
programmer can provide a hint to the compiler to highlight this spatial locality within each
iteration of the parallel loop. On line #7, the cache directive hints the compiler that each
iteration of the loop requires three elements of a[], starting from i-1. Provided with this
hint, the compiler can potentially cache this data in registers, software-managed cache,
or read-only cache (depending on the target). Also depending on the accelerator-specific
optimization strategies, the compiler can ignore the hint, which is not the focus of this study.

Listing 1: The cache directive example; one-dimensional stencil.

1 #pragma acc data copy(a[0:LEN],b[0:LEN])
2 for(n=0; n<K; ++n){
3 #pragma acc parallel loop
4 for(i=1; i<LEN−1; ++i){
5 int lower = i−1, upper = i+1;
6 float sum = 0;
7 #pragma acc cache(a[(i−1):3])
8 for(j=lower; j<=upper; ++j){
9 sum += a[j];

10 }
11 b[i] = sum/(upper−lower+1);
12 }
13 float *tmp=a; a=b; b=tmp;
14 }

Figure 1 compares the performance of two different cache directive implementations
(naïve and optimized) for the code listed in Listing 1. These two implementations are
compared to the baseline (which does not use the cache directive). The naïve implementation
isolates cache space to each parallel iteration of the loop. The optimized implementation is
equipped with optimizations later introduced in this paper and exploits the opportunity for
sharing cached elements among parallel iterations. Consequently, optimized delivers more
efficient cache implementation through better occupancy, cache sharing, and initial fetch
parallelization. We explain each of these optimizations in the rest of the paper. This figure
emphasizes the importance of optimizing cache implementation.

3 Implementations

In this section, we present three cache directive implementations for accelerators employing
software-managed cache. We discuss methods for the case where the list of variables
consists of subarrays (simplified versions of the presented methods are applicable for
scalar variables.). For implementing the cache directive, the compiler requires two pieces
of information: i) the range of the data to be cached and ii) the array accesses (within
the cache region) that their array index value falls within the subarray range (we assume
pointer aliasing is not the case and pointers are declared as restricted type in the accelerator
region, using C’s restrict keyword.). Using the information provided through the directive,



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 5

B
as

el
in

e

N
ai

ve

O
pt

im
iz

ed

B
as

el
in

e

N
ai

ve

O
pt

im
iz

ed

B
as

el
in

e

N
ai

ve

O
pt

im
iz

ed

B
as

el
in

e

N
ai

ve

O
pt

im
iz

ed

0

1.0

2.0

3.0

4.0

5.0

6.0

N
or

m
al

iz
ed

Ti
m

e

1K 16K 128K 2M

Figure 1: Comparing naïve and optimized cache implementations under 1D stencil kernel
listed in Listing 1 (30-element radius, 1K, 16K, 128K, and 2M elements.)

the compiler knows the subarray; data that should be cached. To gather the second piece
of information, the compiler must examine the index of every array access in the cache
region. If the compiler could statically assure that the index falls within the cache range,
the array access might simply be replaced by a cache access in the code. Otherwise, the
compiler should generate a code to decide to fetch from the cache or global memory on-
the-fly. Therefore, depending on the code, the compiler may generate a different control
flow. As we show in this paper, this can be very expensive to calculate in runtime. Starting
from OpenACC 2.5 [OpenACC2015], the following restriction has been added to the cache
directive specification: within the cache region, all references to an array listed in the cache
directive must refer to the range specified in the cache directive. Our first two proposed
methods (EHC and RBC) comply with the older OpenACC specification [OpenACC2013]
and are suitable for applications written in older OpenACC versions (e.g. v2.0). Our third
method takes advantage of the restriction added in OpenACC 2.5 to highly optimize the
implementation.

The first method is an emulation of hardware-managed cache through software-managed
cache. To this end, data and tag arrays are maintained in the software-managed cache.
Operations of hardware cache is emulated using these two arrays. The second and third
methods are range-based caching. The second method stores the lower and length specifiers
and checks if the value of the index falls within this range. The third method assumes all
indexes fall into the fetched range and uses a simple operation to map array indexes to cache
locations. Below we elaborate on these methods.

3.1 Emulating Hardware Cache (EHC)

Overview. Two arrays are allocated in the software-managed cache; data and tag. Data array
stores the elements of the subarray. Tag array stores the indexes of subarray elements that
are currently cached. Tag array can be direct-mapped, set-associative, or fully-associative
to allow caching the entire or part of the subarray transparently. The decision depends on
the subarray size and accelerator capabilities.

Pros and cons. The main advantage of this method is the ability to adapt to the available
cache size. If the cache directive demands a large space and the accelerator’s cache size is
small, this method allows storing only a portion of the subarray (other methods might ignore
the directive in this case). There are two disadvantages with this method though. First, storing
the tag array in the software-managed cache lowers the occupancy of the accelerator and



6 A. Lashgar and A. Baniasadi

limits concurrent threads. Second, at least two cache accesses (tag plus data) are made for
every array access, increasing the read/write delay significantly. In terms of operations, each
global memory access is replaced by two cache accesses and few other logical/arithmetic
and control operations. This significant overhead impairs the performance advantages as
the total latency of the cache hit can exceed the global memory latency (depending on the
accelerator’s design).

3.2 Range-based Conservative (RBC)

Overview. One array and two pointers are allocated in the software-managed cache. The
array stores the subarray. Two pointers keep the range of indexes stored in the cache. One
of the pointers points to the start index and the other points to the end index (or the offset
from the start). To check if the array index falls within the subarray range or not, the index
is checked against the range kept in pointers. Two comparisons evaluate this; index ≥ start
&& index < end. If the condition holds, data is fetched from the cache, otherwise from
global memory. Moreover, if the condition holds, the index should be mapped from global
memory to cache space. The operation for this mapping is a subtraction (index - start).

Pros and cons. The cache directive always points to a stride of data. This method exploits
the fact that elements of subarray are a row of consecutive elements from the original array
and minimizes the overhead for maintaining the track of the cached data (compared to EHC).
The method stores two pointers pointing to the start and end of the stride. The method can
be extended to multi-dimensional subarrays by storing a pair of pointers per dimension. The
only disadvantage of this method is the performance overhead of the control flow statement
generated for checking whether the index falls within the range of stride or not. This control
statement might be an expensive operation for multi-dimensional subarrays (2 + 1 logical
ops. plus a branch for 1D, 4 + 3 logical ops. plus a branch for 2D, etc.).

3.3 Range-based Intelligent (RBI)

Overview. This method improves RBC one step further and assumes array indexes always
fall within the subarray range. This avoids the costly control flow statements for evaluating
whether the data is in the cache or not. The compiler may use this method if the compiler
passes are able to find the range of values of the index statically.

Pros and cons. This method has significant performance advantage over RBC as it
avoids the costly control statements for checking if the data exists in the cache or not.
Assuring that the index always falls within the fetched stride was not a trivial compiler pass
in the past. The restrictions added in the latest OpenACC version have addressed this by
limiting the subarray references. Accordingly, the latest version of OpenACC (2.5 released
in November 2015) adds a restriction to cache directive requiring all references to the
subarray lie within the region being cached [OpenACC2015]. This essentially means RBI
can be used with all applications that follow OpenACC ≥ 2.5.

3.4 Example

Listing 2 and 3 show the CUDA implementations of the methods explained above. Three
procedures are implemented for each method: i) __cache_fetch(), ii) __cache_read(), and
iii) __cache_write() (as a performance issue, these procedures are declared inline to avoid
procedure calls within the accelerator region.). The accelerator code is generated to call
__cache_fetch() early before the cache region starts. This procedure is responsible for



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 7

fetching the data into the cache. Within the cache region, the compiler replaces every array
read with __cache_read() call and array write statement with __cache_write() call. For
these implementations, we assume a write-through cache (alternative is discussed in Section
4.3.).

Listing 2: Implementation of Emulating Hardware Cache (EHC) in CUDA.

1 __device__ void __cache_fetch(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned* ctag_ptr,
2 unsigned st_idx, unsigned en_idx){
3 for(unsigned i=st_idx; i<en_idx; i++){
4 unsigned cache_idx=acc_idx&0x0ff; //direct map
5 c_ptr[cache_idx]=g_ptr[i]; // update data array
6 ctag_ptr[cache_idx]=i; // update tag array
7 }
8 }
9 __device__ PTRTYPE __cache_read(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned* ctag_ptr,

10 unsigned st_idx, unsigned en_idx, unsigned acc_idx){
11 unsigned cache_idx=acc_idx&0x0ff; //direct map
12 if(ctag_ptr[cache_idx]==acc_idx){
13 return c_ptr[cache_idx]; // read from cache
14 }else{
15 c_ptr[cache_idx]=g_ptr[acc_idx]; // read from global memory, update data
16 ctag_ptr[cache_idx]=acc_idx; // and tag arrays
17 return c_ptr[cache_idx]; // read from cache
18 }
19 }
20 __device__ void __cache_write(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned* ctag_ptr,
21 unsigned st_idx, unsigned en_idx, unsigned acc_idx, PTRTYPE value){
22 unsigned cache_idx=acc_idx&0x0ff; //direct map
23 if(ctag_ptr[cache_idx]!=acc_idx)
24 ctag_ptr[cache_idx]=acc_idx; // update tag
25 g_ptr[acc_idx] =c_ptr[cache_idx] =value; // write−through
26 }

Listing 2 shows the CUDA implementation of EHC where the tag array models a direct-
map cache. For this example, we assume a 256-entry cache. In this case, mapping from global
memory indexes to cache space is a single logical operation. Listing 3 shows the CUDA
implementation of RBC. RBI implementation is the same as Listing 3, except the control
statement in __cache_read() and __cache_write() is removed as the condition of the control
statement is always true in RBI. In this Listing, the mapping is an arithmetic operation;
subtracting index from the start pointer. __cache_fetch() routine in all implementations has
a for loop statement. Later in Section 4.2.4, we discuss opportunities to accelerate this loop
through parallelization.

4 Implementation Optimizations

In this section, we introduce optimizations for implementations introduced in the previous
section. Specifically, we present optimizations for cache fetch routine, cache sharing, cache
writes, and minimizing index mapping overhead.



8 A. Lashgar and A. Baniasadi

Listing 3: Implementation of Range-based Conservative (RBC) in CUDA.

1 __device__ void __cache_fetch(PTRTYPE* g_ptr, PTRTYPE* c_ptr,
2 unsigned st_idx, unsigned en_idx){
3 for(unsigned i=st_idx; i<en_idx; i++)
4 c_ptr[i−st_idx]=g_ptr[i];
5 }
6 __device__ PTRTYPE __cache_read(PTRTYPE* g_ptr, PTRTYPE* c_ptr,
7 unsigned st_idx, unsigned en_idx, unsigned acc_idx){
8 if(acc_idx>=st_idx && acc_idx<en_idx){
9 unsigned cache_idx=acc_idx−st_idx;

10 return c_ptr[cache_idx];
11 }else
12 return g_ptr[acc_idx];
13 }
14 __device__ void __cache_write(PTRTYPE* g_ptr, PTRTYPE* c_ptr,
15 unsigned st_idx, unsigned en_idx, unsigned acc_idx, PTRTYPE value){
16 if(acc_idx>=st_idx && acc_idx<en_idx){
17 unsigned cache_idx=acc_idx−st_idx;
18 c_ptr[cache_idx]=value;
19 }
20 g_ptr[acc_idx]=value;
21 }

4.1 Cache Fetch Routine

The cache fetch routine is called before cache region starts. This is done once per parallel
instance of the loop which the cache directive is associated with (the fetch routine might be
called multiple times, if located in a sequential loop.). If the cache region has long latency,
this routine’s performance may not be the limiting factor. Otherwise, if the cache region is
short, the performance of this routine is critical to the overall performance.

Performing our evaluations under NVIDIA GPUs, we found that minimizing control
flow statements comes with significant performance advantage. The fetch routine has a for
loop statement (as presented earlier in Section 3.4) which imposes control flow overhead.
Loop unrolling can be employed to reduce this overhead, as the length of the loop is a
compile-time constant (equal to the length of the subarray). Also the compiler can reduce
this overhead further by sharing a single for loop among multiple subarray fetches. Compiler
heuristics can decide if the loop can be shared among multiple subarrays. For example,
the compiler can read the cache directive and group the subarrays having equal length.
Subsequently the grouped subarrays can share the same for loop, as the number of iterations
for fetching the data is the same for all of them.

Another opportunity to optimize the for loop is to parallelize the loop. A number of
parallel threads, e.g. equal to the size of the thread block, can be employed to fetch the data
into the software-managed cache. If the compiler is not using parallel threads for another
task, parallel fetch can simply achieve this. However, if parallel threads have already been
employed to execute parallel tasks, then the compiler should assure that while threads
collaborate for fetching the data, they maintain a separated view of the cache, specially in
the case of cache writes. We explain this further in Section 4.2.



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 9

Listing 4: Example of inner and outer parallel loops around cache.

1 #pragma acc parallel loop
2 for(i=0; i<N; i++){ // OUTER LOOP:
3 // depending on X and Y, the subarray
4 // may or may not be shared among iterations
5 #pragma acc cache(subarray[X:Y])
6 { // beginning of cache region
7 #pragma acc loop
8 for(j=0; j<N; j++){ // INNER LOOP:
9 // the subarray is shared among all iterations

10 }
11 } // end of cache region
12 }

4.2 Cache Sharing

Considering the relative nesting of the cache directive in respect to parallel loops, there are
two types of parallel loops: outer parallel loops and inner parallel loops. Iterations of inner
parallel loops already share the same data. In this section we introduce a method to find
data sharing among the iterations of outer parallel loops. Listing 4 clarifies outer and inner
loops in an example.

The cache directive is located within one (or more) outer parallel loop(s) and the cache
space should be allocated once per parallel instance of outer parallel loop(s). The compiler
can optimize cache utilization by unifying the allocations of common data and sharing them
among parallel iterations. When it comes to cache directive implementations in CUDA,
sharing data between parallel iterations is efficiently feasible by mapping parallel iterations
(in OpenACC) to threads of the same thread block (in CUDA), sharing data through CUDA
shared memory.

We have different methods for cache sharing under EHC, RBC, and RBI. Under EHC,
cache sharing can be achieved by sharing one single larger data and tag arrays among all
iterations. The complexity is in efficiently managing consistency of data and tag arrays,
considering parallel accesses to the cache may occur from different iterations. Currently,
the only mechanism in CUDA to maintain the consistency is to update data and tag arrays
atomically using atomic operations. Since this severely slows down the performance, we
found cache sharing unpromising in EHC. Below we discuss cache sharing method under
RBC and RBI.

We decompose the cache sharing problem under RBC and RBI to five subproblems: i)
extract sharing, ii) find sharing width, iii) renew cache scope, iv) fetch collaboratively, and
v) optimize cache size. Below we discuss each problem.

4.2.1 Extract Sharing

The problem is to map outer parallel loops (loops that are marked by the OpenACC loop
directive as parallelizable) to thread hierarchies with the constraint of maximizing the
subarray overlap among threads of the thread block. Listing 5 presents a compiler pass
as a solution to this problem. The problem inputs are the cache directive (code block
where pragma is injected and list of subarrays), outer parallel loops (loop handle, induction



10 A. Lashgar and A. Baniasadi

variable, and increment step), and the kernel code. The problem output is the mapping of
loop iterations to CUDA thread block dimensions.

Listing 5: Compiler pass that extracts cache sharing opportunity and suggests a mapping to
maximize the overlap among subarrays of consecutive iterations.

Inputs:
cache: the code block id of the cache region

subarrays: array of subarrays listed in the cache directive
Ls: array of outer parallel loops, indexed by induction variables

IDs: array of induction variables associated with outer parallel loops
code: the kernel code

Output:
mapping: structure showing the parallel loops to kernel dimensions mapping

Begin
final_mapping = []
skipped_subarray = []
for subarray in subarrays

unmapped_dimensions = [x, y, z]
suba_mapping = []
for dimension in subarray

lower, length <− get_specifiers(dimension)
if is_linear(lower, IDs, code, Ls)

rate, inductionVar, offset <− get_linear_params(lower, IDs, code, Ls)
// map parallel loop iterated by inductionVar to an unmapped dimension
suba_mapping.push(Ls[inductionVar] −> unmapped_dimension.pop())

if not is_contrary(final_mapping, suba_mapping)
mapping = merge(final_mapping, suba_mapping)

else
skipped_subarrays.push(subarray)

return final_mapping
End

The pass iterates over the subarrays listed in the cache directive. For each dimension
of the subarray (dealing with multi-dimensional subarrays), lower and length specifiers are
read. If lower is a linear function of one single induction variable, consecutive iterations of
the loop corresponding to the induction variable are considered for sharing (see examples
in Table 1). is_linear() function returns true if i) lower specifier is a linear function of an
induction variable and ii) the increment step of tthe corresponding loop is linear (e.g. i+=1,
i-=1, i+=7, etc.). If lower is linear, it should be in rate ∗ inductionV ar + offset form,
where inductionVar is an induction variable and rate and offset are expressions independent
of any induction variable. Forcing the increment step to be linear assures that the neighbor
threads cache subsequent elements, forming a sharing range that is densely populated by
the data from neighbor threads (consecutive iterations).

get_linear_params() returns rate, inductionVar, and offset. suba_mapping is updated
to map the parallel loop iterated by inductionVar to unmapped thread block dimensions,
starting with x dimension. is_contrary() returns true if the suba_mapping that is found here
contrasts with the mapping recorded in final_mapping. If this is the case, subarray is pushed
to skipped_subarrays. Cache sharing optimizations will be skipped for the subarrays in
skipped_subarrays. Otherwise, final_mapping is updated to be merged with suba_mapping.



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 11

Table 1 Example of cache sharing when lower specifier is a linear function of an induction
variable. Assumptions: i is an induction variable of a parallel loop, increment step of the
loop iterated by i is +1, and thread block size is 3.

subarray lower length
ranges mapped to

the iterations shared range

a[i:3] i 3

T0 -> 0 to 2
T2 -> 1 to 3
T2 -> 2 to 4

etc.

T0 to T2 -> 0 to 4
etc.

a[2*i+1:3] 2*i+1 3

T0 -> 1 to 3
T1 -> 3 to 5
T2 -> 5 to 7

etc.

T0 to T2 -> 1 to 7
etc.

a[3*i+4:5] 3*i+4 5

T0 -> 4 to 8
T1 -> 7 to 11
T2 -> 10 to 14

etc.

T0 to T2 -> 8 to 14
etc.

4.2.2 Find Sharing Width

Sharing width is referred to the number of iterations (or threads) that share one common
cache. Ideally, sharing width is equal to the thread block size. This is the case when the
total number of loop iterations is multiple of the thread block size. However, since the total
number of loop iterations is a runtime variable mostly, compiler cannot statically assure
this number is multiple of thread block size. We propose three different methods to find the
sharing width in CUDA; using synchronization, kernel arguments, or fixed.

Synchronization: This method counts the number of threads that have reached the
cache region. To count the number of threads, __syncthreads_count(bool flag) device
function from CUDA API is used. To count the number of threads along x dimension of
the thread block, __syncthreads_count is called with the argument threadIdx.y==0 &&
threadIdx.z==0. Similarly, for y and z dimensions of the thread block, the function is
called with threadIdx.x==0 && threadIdx.z==0 and threadIdx.x==0 && threadIdx.y==0
arguments, respectively.

Kernel Arguments: This method exploits the fact that only the last thread blocks across
every dimension may have a sharing width different than the thread block size. This width
can be pre-calculated and passed to the kernel as an argument, knowing the total number
of iterations and the thread block size upon kernel launch. Within the kernel, threads check
if they belong to the last thread block of the dimension. If yes, sharing width is set to the
value passed as the argument. Otherwise, sharing width is equal to the thread block size.
This method has a performance advantage over the first method as it avoids synchronization
and reduction.

Fixed: This method simply sets the sharing width equal to the thread block size. This
method is only applicable in the case where compiler can statically assure that the total
number of loop iterations is multiple of the thread block size.



12 A. Lashgar and A. Baniasadi

4.2.3 Renew Cache Scope

From the notation of the cache directive, every thread knows the range from lower to
lower + length is cached. For RBC and RBI, start and end pointers are set to these values.
However, when threads of the thread block are sharing the cache, these pointers should
be recalculated, since a larger data range is cached in this case. We propose two different
methods to recalculate pointers: communicating and private.

Communicating: This method shares pointers among threads of the thread block.
To share pointers, these are declared as CUDA __shared__ variables. To set pointers
consistently, one thread is to set start and another thread is to set end. start pointer is set
to lower by the thread that is demanding subarray’s elements located at the lowest address.
This is the first thread within the sharing width, if the corresponding loop has increasing
increment step (e.g. +=1, +=3, etc.). Otherwise, if the corresponding loop has decreasing
increment step (e.g. -=1, -=3, etc.), this thread is the last thread within the sharing width.
Similarly, end pointer is set to lower + length by the thread that is demanding subarray’s
elements located at the highest address. This is the last thread within the sharing width, if
the corresponding loop has increasing increment step. Otherwise, if the corresponding loop
has decreasing increment step, this thread is the first thread within the sharing width.

Private: This method allocates start and end pointers privately for each thread.
Following equations are used to recalculate start and end pointers privately:

start = lower − rate ∗ threadID
end = start+ (length− 1) + rate ∗ (sharingWidth− 1)
where lower, rate, threadID, length, and sharingWidth parameters are explained below.

lower and length are specifiers of the subarray passed to the cache directive. rate is obtained
from lower by using get_linear_params() function explained in Section 4.2.1. sharingWidth
is the number of active threads in the cache region obtained by the methods discussed
in Section 4.2.2. threadID is the thread ID within the thread block, ranging from 0 to
sharingWidth - 1 in the cache region. Equations above are applicable to the case where
lower is a function of an induction variable of a loop with an increasing increment step.
Under decreasing increment step, following equations are used:

start = lower + rate ∗ threadID − rate ∗ (sharingWidth− 1)
end = lower + rate ∗ threadID + (length− 1)

4.2.4 Fetch Collaboratively

If cache sharing is applicable, threads of the thread block share one common data in shared
memory. Since the common data is composed of words located at consecutive addresses,
threads of the thread block can be used to efficiently fetch the data using few well-coalesced
accesses in parallel. To perform this optimization, only __cache_fetch() routine in Listing
3 needs to be modified. The for loop statement should be modified to:

for(unsigned i=threadIdx.x+st_idx; i<en_idx; i+=blockDim.x)
This is for the case where the subarray is one-dimensional and the parallel loop is mapped

to x dimension of the thread block. For multidimensional subarrays, this loop is replicated
but modified to reflect correct mapping of parallel loops to thread block dimensions.

4.2.5 Optimize Cache Size

When cache is not shared, each thread demands length elements from shared memory.
While sharing the cache among threads of the thread block, it might seems length ∗



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 13

sharingWidth elements from shared memory are required. This is correct as long as
subarrays of consecutive loop iterations are located back to back in the memory. Otherwise,
if there is an overlap or gap among subarrays, this number overestimates or underestimates
the exact size. We use the following formula to optimize the cache size:

length+ rate ∗ (sharingWidth− 1)
where sharingWidth is the number of active threads in the cache region obtained by the

methods discussed in Section 4.2.2. length is a specifier of subarray passed in to the cache
directive. rate is obtained from lower by using get_linear_params() function explained in
Section 4.2.1.

4.3 Cache Write Policy

Writing to the subarray in the cache region invokes the write routine. We assume two
alternative policies for cache write: write-back and write-through. Write-back buffers cache
writes and writes final changes back to DRAM at the end of the cache region. Write-
through writes every intermediate write to both cache and global memory. Write-back
tends to perform better under dense and regular write patterns whereas write-through
performs better under sparse irregular write patterns. We compare performance of these
two implementations in Section 5.3.

If the compiler implements write-back cache, an additional routine should be invoked
at the end of the cache region to write the dirty content of the cache to global memory. For
tracking the dirty lines, the compiler can decide to i) keep track of the dirty lines through a
mask or ii) assume all the lines are dirty. Although keeping track of dirty lines can reduce
the total amount of write operations, the compiler can instead use the brute-force write-
back on the GPUs for two reasons. First, tracking dirty lines demands extra space from
the software-manage cache to store the dirty mask. This, in turn, lowers the occupancy of
GPU. Second, the write-back routine can include extra control flow statements to filter out
dirty lines. These control flow statements can harm performance (e.g. limiting ILP and loop
unrolling). On the other hand, employing a dirty mask is preferred, if the size of the cache
is large. In this case, the dirty mask version is more efficient than the brute-force approach.
In this paper we assume brute-force write-back cache.

4.4 Index Mapping

As we discussed in Section 3, mapping global memory indexes to shared memory indexes
involves a few operations. To mitigate this overhead, the compiler can allocate a register to
store the output of operations for the life time of the cache region, if the value of index is
not changing in the cache region. The compiler can also reuse this register for other array
accesses, if the array indexes have the same value. This optimization saves register usage
and mitigates index mapping overhead.

5 Experimental Results

In this section, we first report the experiments performed to understand shared memory
and optimize our implementation on the target GPU. Then we study the performance of
methods introduced in Section 3, under three test cases. This is followed by investigating
performance of different cache write policies. Finally, we evaluate performance portability
of our implementation.



14 A. Lashgar and A. Baniasadi

Listing 6: CUDA microbenchmark for understanding shared memory.

// compiled for different TYPE, ITER, PAD, XY
__global__ void kernel(TYPE *GLB, int size){

__shared__ int SHD[16+PAD] [16+PAD];
// mapping config to shared memory
#ifdef XY
int row=threadIdx.x, rows=blockDim.x;
int col=threadIdx.y, cols=blockDim.y;
#else
int row=threadIdx.y, rows=blockDim.y;
int col=threadIdx.x, cols=blockDim.x;
#endif
// fetch
int index=(threadIdx.x+blockIdx.x*blockDim.x)*size+

(threadIdx.y+blockIdx.y*blockDim.y);
SHD[row][col]=GLB[index];
// computation core
int S = (row==(rows−1))?row:row+1;
int N = (row==0) ?0 :row−1;
int W = (col==(cols−1))?col:col+1;
int E = (col==0) ?0 :col−1;
int k=0; TYPE sum=0;
for(k=0; k<ITER; k++){

sum=(SHD[row][col]+ SHD[S][col]+ SHD[N][col]+ SHD[row][E]+ SHD[row][W])*0.8;
__syncthreads(); SHD[row][col]=sum; __syncthreads();

}
// write−back
GLB[index]=SHD[row][col];

}

We use IPMACC compiler [Lashgar2014] for compiling OpenACC applications and
implementing the cache directive. IPMACC framework translates OpenACC to CUDA and
uses NVIDIA nvcc compiler to generate GPU binaries. We run evaluations under NVIDIA
Tesla K20c GPU. The execution time of the kernel is measured by nvprof [NVIDIA2017a].
Every number is harmonic mean of 30 independent samples.

5.1 Cache Performance Sensitivity

Software-managed cache in NVIDIA GPUs (also called shared memory) employs multiple
banks to deliver high bandwidth. Every generation of NVIDIA GPUs has a certain
configuration of shared memory; namely a specific number of banks and the bank line size.
A bank conflict occurs once a warp (group of threads executing instructions in lock-step
over the SIMD). executes a shared memory instruction and threads of a warp need different
rows of the same bank. Bank conflicts cause access serialization if the bank does not have
enough read/write ports to deliver data in parallel. We develop a CUDA microbenchmark to
evaluate the impact of several parameters on bank conflict. Knowing these impacts delivers
deeper insight on optimizing the cache directive implementations and enhancing their
performance. This test should run separately for every backend supported by the compiler to



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 15

Figure 2: Comparing execution time of kernel under various shared memory configurations.

allow hardware-specific optimizations. Below we first review the microbenchmark structure,
followed by presenting results obtained on the GPU of this study. Finally we summarize
the findings that help optimizing the cache directive implementation.

5.1.1 Microbenchmark setup

We assume one two-dimensional shared memory array per thread block. We also assume
two-dimensional thread blocks. We develop a simple kernel in which every thread reads
four locations of shared memory and writes one location. These reads/writes are in a loop
iterated several times. The code is shown in Listing 6. We report the execution time of this
kernel and evaluate the impact of the following parameters in the kernel body:

• Datatype size (TYPE): The datatype size of shared memory array is the number of
bytes allocated for each element of array. Variations in datatype size impact bank
conflict since it determines the layout of array in the shared memory (e.g. one element
per bank, two elements per bank, etc.).

• 2D array allocation: We investigate two alternatives in allocating 2D shared memory:
2D array notation or 1D array notation (flattened notation). 2D array notation is simpler
in indexing and code readability. We are also interested to understand whether flattened
notation has a different layout in the shared memory from 2D array.

• Padding (PAD): When the size of shared memory array is multiple of memory banks,
adding a small padding to the array can mitigate the bank conflict. The padding
increases the row pitch, spreading the columns of a row across different banks.

• Access pattern: Since bank conflict only occurs among the threads of the same warp,
it is important to mitigate bank conflict algorithmically. We evaluate the impact of
these algorithmic optimizations by mapping threads of the thread block to different
dimensions of the shared memory array. Operating in XY mapping, threads along the x
dimension of the thread block are mapped to the first dimension of the shared memory
array and threads along the y dimension are mapped to the second dimension. YX
mapping reverses this as threads along x and y dimensions are mapped to the second
and first dimensions of the array, respectively.

• Iterations (ITER): Number of iterations of the loop in the kernel body. This number
indicates the ratio of shared memory accesses to global memory accesses.



16 A. Lashgar and A. Baniasadi

5.1.2 Results

Figure 2 reports the execution time of the kernel in Listing 6 under various configurations.
Bars report the execution time for three different ITERs (1, 2, and 4), two TYPEs (4-byte
integer and 8-byte floating-point), two array allocation schemes (2D and flattened 2D), two
shared memory access patterns (XY and YX), and two padding sizes (zero and one).

As shown in the figure, TYPE has modest impact on the execution time. Also the
allocation scheme has minor impact on performance. The latter suggests that the layout of
2D array in the shared memory banks is similar to that of the flattened 2D array.

Access pattern, however, impacts performance significantly. In this benchmark, YX
mapping delivers a better performance compared to XY. This is explained by how threads
are grouped into warps. Warps are occupied first by the threads along the x dimension and
then by the threads along y. Therefore threads along x should access consecutive words in
order to reduce shared memory bank conflict. This is precisely what YX mapping does.

As shown in the figure, adding a padding to the array can have an impact similar to that
of access pattern tunings, lowering the execution time roughly the same amount. Adding
a padding to the array can lower the execution time by 57% and 56% under double and
int, respectively. It should be noted that under the cases where the array is padded there is
still room for improvement as evidenced by the results. Under one padding, modifying the
code algorithmically for reducing bank conflict, as comparing XY to YX shows, can further
lower the execution time by 8% (for both int and double).

Increasing the number of iterations (ITER) increases the importance of the shared
memory performance in the overall performance. For larger iterations, the impact of access
pattern and padding is more significant. For example, under one iteration, the gap between
zero-padding and one-padding is 23%. This gap grows to 37% and 55% under 2 and 4
iterations, respectively.

5.1.3 Summary of findings

We make the following conclusions from the findings presented in this section and use
them to optimize our implementations. First, the layout of 2D arrays allocated in the
shared memory is found to be the same as flattened 2D arrays. Since no performance
advantage is found in using flattened 2D arrays, we use multi-dimensional arrays for
caching multi-dimensional subarrays to simplify array indexing code generation. Second,
our implementation adjusts mapping of parallel loops to x and y dimensions of the thread
blocks with the goal of having threads along x accessing consecutive bytes. We use a
heuristic to map the most inner parallel loop to the x dimension of the grid. This is due to the
fact that, intuitively, the inner loop has stronger locality and traverses arrays column-wise.
Third, adding a small padding can pay off if other compiler optimizations do not allow
mapping inner parallel loops over x dimension.

5.2 Test Cases

Here we investigate the cache directive under three different benchmarks; matrix-matrix
multiplication (GEMM), N-Body simulation, and Jacobi iterative method. For each
benchmark, we compare the performance of four implementations (we found EHC
implementation very slow and hence we avoid further discussion on this.):

i OpenACC without cache directive,



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 17

Table 2 Development effort of the benchmarks under OpenACC, OpenACC plus cache, and
CUDA implementations.

OpenACC OpenACC+cache CUDA
GEMM 84 94 116
N-Body 81 84 108
Jacobi 145 152 189

ii OpenACC plus cache directive implemented using RBC,

iii OpenACC plus cache directive implemented using RBI, and

iv hand-written CUDA version.

All cache-based implementations are optimized with the parallel cache fetch and cache
sharing optimizations discussed in Section 4. Under RBC and RBI, we use kernel arguments
as the default method for finding sharing width (discussed in Section 4.2.2) and we use
private as the default method for renewing cache scope (discussed in Section 4.2.3).

Below we first compare development efforts of these four implementations. Next
we compare performance of these implementations. Then we investigate how these
implementations utilize GPU resources, e.g. register file and software-managed cache.
Finally, we investigate the impact of alternative optimizations on the speedup.

5.2.1 Development Effort

We wrote all versions of GEMM and Jacobi. For N-Body Simulation, we used the CUDA
version available in GPU Computing SDK [NVIDIA2017b] and modified the serial version
available there to obtain OpenACC versions. We did our best to hand-optimize using the
techniques that we are aware of. Table 2 compares the development effort of GEMM, N-
Body, and Jacobi under OpenACC, OpenACC plus cache, and CUDA implementations.
Development effort is measured in terms of the number of statements, including declaration,
control, loop, return, and assignment statements. As reported, OpenACC plus cache can be
obtained by modifying 3 to 10 lines of the baseline OpenACC version.

5.2.2 Performance

GEMM: Cache-based OpenACC implementations iteratively fetch 16× 16 tiles of two
input matrices into the software-managed cache using the cache directive and keep the
intermediate results (sum of products) in registers. The CUDA version also implements
the same algorithm using shared memory notation. Figure 3 compares the performance
of these implementations under various square matrix sizes, compared to the baseline
OpenACC (without cache). A similar trend can be observed under different input sizes. RBI
outperforms OpenACC by nearly 2.4X and performs very close to CUDA. RBC, RBI, and
CUDA reduce the global memory traffic significantly, compared to OpenACC. By fetching
the tiles of input matrices into software-managed cache, these implementations maximize
memory access coalescing. Also these implementations exploit the locality among neighbor
threads to minimize redundant memory fetches. Using nvprof [NVIDIA2017a], we found
that RBI reduces the number of global memory loads by 12X (under 1024x1024 matrices),
compared to OpenACC (the very same improvement is observed under RBC and CUDA



18 A. Lashgar and A. Baniasadi

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

Ti
m

e

512x512 1024x1024 2048x2048 4096x4096 8192x8192

Figure 3: Comparing performance of four GEMM implementations under different matrix
sizes. For each bar group, bars from left to right represent OpenACC without cache directive,
OpenACC with cache directive implemented using RBC, OpenACC with cache directive
implemented using RBI, and CUDA.

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A
0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

Ti
m

e

64K 128K 256K 512K 1M 2M

Figure 4: Comparing performance of four N-Body simulation implementations under
different number of bodies.

too). Using RBC, the compiler generates a code to check the memory addresses dynamically
and to find out if the address falls within the subarray range or not. If the address falls within
the subarray range, the data is fetched from the cache. Otherwise, the data is fetched from the
global memory. Under RBI, however, the compiler static passes assure that dynamic memory
accesses always fall in the subarray range (if violated, the program can generate incorrect
output). Therefore, dynamic checking for the address range is avoided. This explains why
RBI always performs faster than RBC. As shown in Figure 3, RBC is 2.67X slower than
RBI. This gap is caused by RBC’s extra logical and control flow instructions per memory
access, negating the gain achieved from using the software-managed cache. For the 2D
subarray of this benchmark, these extra instructions are one branch, four comparisons, and
three ANDs. We discuss this issue further in Section 6.



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 19

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

Ti
m

e

1Kx1K 2Kx2K 4Kx4K 8Kx8K 16Kx16K

Figure 5: Comparing performance of four Jacobi iterative method implementations under
different matrix sizes.

N-Body simulation: Figure 4 compares four implementations of N-Body simulation
under different problem sizes. To improve performance using software-managed cache,
interaction between masses are computed tile-by-tile. Bodies are grouped into tiles and
fetched into software-managed cache one tile at a time. This lowers redundant global
memory instructions and DRAM accesses. RBI outperforms baseline OpenACC by 92%-
111%. While RBI performs very close to CUDA, there is still a gap between them (8-10%).
This gap is mainly the result of efficient implementation of the fetch routine in the CUDA
version. RBC is unable to improve performance of the baseline OpenACC. This is explained
by the overhead for accessing software-managed cache; i.e., assuring the address falls within
the range of data existing in the shared memory.

Jacobi iterative method: Figure 5 compares four implementations of Jacobi iterative
method under different problem sizes. Each thread in Jacobi reads nine neighbor elements
(3-by-3 tile) and updates the value of the center element. Considering a two-dimensional
matrix, calculations used by neighbor elements share significant amount of input data (four
to six elements.) Fetching this data into software-managed cache and sharing data among
threads is one way to optimize baseline OpenACC. We employ this in RBC, RBI, and CUDA
implementations. Although our analysis shows RBC lowers global memory accesses, RBC
harms overall performance when compared to the baseline. This is explained by the overhead
(control flow and logical operations) of assuring addresses fall within the range of the data
fetched into the shared memory. RBI removes this overhead and improves performance of
baseline OpenACC by 3-6%. Despited this we observe a huge gap between RBI and CUDA.
CUDA launches thread blocks equal in size to the size of the data being used by the thread
block. RBI, however, launches thread blocks equal in size to the size of the computations
being performed by the thread block. This results in the CUDA version using slightly larger
thread block size than RBI. Here threads at the boarder of thread block are only used for
fetching the data. This reduces irregular control flow in the fetch routine. We found that this
can be effectively implemented in OpenACC to reduce the gap between RBI and CUDA.
However, we do not investigate it further due to the high development effort required (close
to CUDA equivalent), which is not desirable for high-level OpenACC.



20 A. Lashgar and A. Baniasadi

Table 3 Comparing occupancy of OpenACC without cache, OpenACC plus cache (RBC and RBI),
and CUDA.

GEMM N-Body Jacobi
OpenACC-nocache 100% (24, 0) 100% (32, 0) 100% (16, 0)
OpenACC-cache-RBC 75% (33, 4KB) 75% (30, 8KB) 100% (21, 1.2KB)
OpenACC-cache-RBI 100% (30, 4KB) 75% (30, 8KB) 100% (18, 1.2KB)
CUDA 100% (30, 4KB) 100% (32, 4KB) 100% (11, 1.2KB)

1Kx1K 4Kx4K 16Kx16k
2.2

2.3

2.4

2.5

Input size

S
pe

ed
up

GEMM

128K 512K 2M
1.9

2.0

2.1

2.2

Input size

N-Body

1Kx1K 4Kx4K 16Kx16k
1

1.05

1.10

Input size

Jacobi

Synchronization Kernel arguments Fixed

Figure 6: Comparing speedup from different finding sharing width methods. Numbers are
normalized to the baseline OpenACC without using the cache directive.

5.2.3 Occupancy

Table 3 reports CUDA Occupancy of different implementations of the test cases discussed
in Section 5.2.2. The table reports occupancy in percentage and, within the parentheses,
the first number reports registers used per thread and the second number report the size of
shared memory used per thread block. All implementations have the same thread block size:
256 under N-Body and 16 by 16 under GEMM and Jacobi. Occupancy is 100% in most
cases, meaning that GPU is able to run up to 2048 threads per Streaming Multiprocessor.
There are three cases where the occupancy is below 100%. RBC implementation of GEMM
uses extra registers and that explains why occupancy drops below 100%. The size of cache
after cache sharing is overestimated under RBC and RBI implementations of N-Body. This
has lowered down the occupancy to 75%.

5.2.4 Implementation Alternatives

In Section 5.2, we reported performance of RBI and RBC under kernel arguments method
of finding sharing width (discussed in Section 4.2.2) and private method of renewing
cache scope (discussed in Section 4.2.3). In this section we investigate performance of RBI
under alternative methods for finding sharing width and renewing cache scope (very similar
discussion applies to RBC as well.)

Find Sharing Width: We compare speedup from three alternative methods for finding
sharing width (kernel arguments, synchronization, and fixed), under three test cases
introduced earlier (GEMM, N-Body, and Jacobi). Fixed method simply sets the sharing



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 21

1Kx1K 4Kx4K 16Kx16k
1.4

1.8

2.2

2.6

Input size

S
pe

ed
up

GEMM

128K 512K 2M
1.8

1.9

2.0

2.1

2.2

2.3

Input size

N-Body

1Kx1K 4Kx4K 16Kx16k
0.9

0.95

1

1.05

1.10

Input size

Jacobi

Private Communicating

Figure 7: Comparing speedup from different renewing cache scope methods. Numbers are
normalized to the baseline OpenACC without using the cache directive.

width to the thread block size. Kernel arguments method uses a control-flow statement per
dimension and sets the sharing width either to the thread block size or a pre-calculated
number (obtained from kernel arguments). Synchronization method performs one reduction
per dimension of subarray to find sharing width. As reported in Figure 6, fixed method
performs fastest. Although fixed method is the fastest, it is not generally applicable. This
is because compiler may not be able to statically guarantee that the total number of loop
iterations is multiple of thread block size. If this is the case, kernel arguments method can
be used instead of fixed method. We found that the performance gap between fixed and
kernel arguments is 3-5%. Synchronization method performs slowest under all test cases
as reported in Figure 6 and performs up to 3% slower than kernel arguments. Reductions
slow down performance of synchronization significantly for multi-dimensional subarrays.
This is the case in GEMM and Jacobi that use two-dimensional subarrays. In N-Body,
however, one-dimensional subarray is being used and synchronization method performs
close to kernel arguments.

Renew Cache Scope: We compare speedup from two alternative methods of renewing
cache scope (communicating and private), under three test cases introduced earlier (GEMM,
N-Body, and Jacobi). Communicating method shares cache pointers among threads of the
thread block and calculates the new scope collaboratively. Slow down under communicating
method is incurred by thread block synchronizations and read/writes from shared memory.
Private method, however, locally calculates the new cache scope according to the equations
proposed in Section 4.2.3 and avoids debilitating inter-thread communications. As shown
in Figure 7, private method outperforms communicating method under all test cases,
except under smallest dataset of N-Body. In this case, the number of parallel threads
is relatively low and GPU cores complete inter-thread communication very fast (since
synchronization instructions are infrequently hindered by other instructions [Liu2016]).
This makes communicating method faster than private method in this case. Overall private
method outperforms communicating method by up to 47%.



22 A. Lashgar and A. Baniasadi

Figure 8: Comparing execution time of kernel under various shared memory configurations.

5.3 Cache Write

We developed two synthetic workloads to investigate performance of write-back and write-
through policies. The first workload’s write pattern is dense and regular. The workload
is of 1D Stencil type where each parallel work computes an element in the output array,
iteratively. In OpenACC terms, all parallel iterations are active (forming the dense pattern)
and consecutive iterations write consecutive words (forming the regular pattern). Every
parallel work serially iterates for a certain number of iterations (which is a run parameter)
and computes the value of the element iteratively. The second workload is the same as the
first, except that only a fraction of threads are active (less than 2%) and only a fraction of
serial iterations perform write (less than 2%). This forms the sparse pattern.

Parameters of these workloads are parallel iterations (total number of work) and number
of serial iterations within the work. The number of serial iterations models the frequency
of cache writes. Sweeping this number from 4 to 4096, we measure the performance of
write-back and write-through under various cache access frequencies.

Figure 8 compares write-back and write-through under the two synthetic workloads
described above (dense regular versus sparse). Two problem sizes are reported for each
workload, 128K and 4K parallel work. We observe a similar trend under both workloads.
When parallel work is massive in size (e.g. 128K work), write-back is faster than write-
through (Figure 8b and 8d). This is due to the fact that large amount of threads can perfectly
hide the latency of write-back’s final write routine. When parallel work is small in size
and write frequency is low (e.g. left side of Figure 8a and 8c), write-through outperforms
write-back. For example in Figure 8a, write-through is faster when write frequency is lower
than 16. Going beyond 16, write-back starts to catch up with write-through. This can be



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 23

Table 4 Performance improvement from RBI over the baseline OpenACC (without cache).

Tesla K20c Quadro K600
GEMM 238.0% 255.1%
N-Body 198.0% 211.4 %
Jacobi 6.4% 2.5%

explained by the higher rate of global memory writes that write-through makes. For large
write frequencies (e.g. >64), write-through performs numerous redundant writes to global
memory. Write-back, in contrast, buffers intermediate written values (in shared memory)
and writes them all to global memory once at the end of cache region. This reduces the total
global memory writes compared to write-through and saves performance. As presented,
the performance gap between write-back and write-through increases from 7% to 34%, as
write frequency increases.

5.4 Performance Portability

Performance portability is one of the most important motivations of using OpenACC
directives. In this paper, we focused on devising efficient implementation of the cache
directive on the most commonly used platform [Norman2015; Bonati2015; Markidis2015],
NVIDIA GPUs. Intuitively, we believe very similar optimization strategies can be followed
on other similar architectures, e.g. AMD GPUs [AMD2012], to devise an efficient
implementation of the cache directive. Discussing optimization strategies on different
platforms is beyond the scope of this paper.

To show the performance portability across NVIDIA GPUs, here we evaluate our
implementation on a different NVIDIA GPU, Quadro K600. In Table 4 we report
performance improvement from RBI implementation over the baseline OpenACC (without
cache) under three benchmarks: GEMM, N-Body, and Jacobi. We limit the evaluations to
single dataset per benchmark (largest dataset that could fit in the memory of Quadro K600).
For RBI configuration, we assume private method for renewing cache scope (Section 4.2.3)
and kernel arguments method for finding sharing width (Section 4.2.2). As shown in the
table, improvements are very close. Improvements are slightly larger under Quadro K600
for GEMM and N-Body benchmarks. This can be explained by the difference in the memory
bandwidth of Quadro K600 and Tesla K20c. DRAM memory bandwidth of Quadro K600 is
29 GB/s which is 7.1 times lower than the bandwidth of Tesla K20c (208 GB/s). Accordingly,
Quadro K600 is more sensitive to the techniques that optimize memory accesses. The cache
directive is an example of these techniques and returns higher performance improvement
when the memory bandwidth is throttled (e.g. Quadro K600).

6 Discussion

6.1 EHC in CUDA

In EHC, tag and data arrays should be kept consistent. This limits cache sharing and
generally parallelism of software-managed cache operations, specially write operations. For
instance, if two threads miss different data and want to fetch both into the same location,
synchronization is necessary. The synchronization overhead can be significant as the only



24 A. Lashgar and A. Baniasadi

way to handle such scenarios is to create a critical section or use atomic operations. Because
of this limitation, for performance goals, cache sharing optimizations should be avoided on
top of EHC. We exclude EHC from evaluations as we did not find it competitive.

6.2 Optimizing RBC

In RBC, __cache_read routine is the performance limiting factor, listed in Listing 3.
Investigating the CUDA assembly of the kernel (in sass format), we found that the compiler
eliminates branches and instead uses predicates. This, on the positive side, eliminates extra
operations for managing the post-dominator stack [Fung2007]. On the negative side, all
instructions, in both taken and not taken paths of the branch, are at least fetched, decoded, and
issued (some are executed as well). The nvcc compiler uses a heuristic to employ predicates
or generate control flow statements (we describe this in Section 5.4.2 of [NVIDIA2017c]).
For __cache_read routine of RBC, the heuristic finds predicate advantageous. However,
the overhead of the predicate version is still huge and the routine is translated to 16 machine
instructions. This explains why RBC is slow. We believe further optimizations on RBC
should be performed at the machine level.

6.3 Alternative cache targets

NVIDIA GPUs have alternative on-chip caches that can be used by OpenACC compiler as
the target of the cache directive (e.g. constant memory and texture cache) or can be used
effortlessly as an alternative to the cache directive (L1 cache and read-only cache). Constant
and texture memory are limited to read-only data. If the subarray is written in the cache
region, constant and texture memory can not store the latest value nor deliver the latest
to subsequent requests. In addition, the precision of the application could be affected if
texture memory is used. We evaluated the performance impact of L1 and read-only caches
separately. We enforced read-only cache using const and __restrict__ keywords and forced
the GPU to cache global accesses through nvcc compile flags (-Xptxas -dlcm=ca) and found
out that performance improvements are less than 2%. This suggests that the advantages of
using software-managed cache is not limited to reading/writing data from/to faster cache,
but also accessing the data in fewer transactions and in a coalescing-friendly way.

6.4 Explicit mapping

OpenACC API accepts hints from the programmer to explicitly specify the mapping of loop
iterations to different thread blocks (gang clause) or the same thread block (worker and
vector clauses). In this case, the compiler should generate a specific mapping of parallel
loops to CUDA thread hierarchies, forced by gang, vector, and worker clauses. This can limit
the range of compiler optimizations in sharing the cache space among threads. Generally,
as long as the mapping enforced by the clauses is a valid configuration and does not have
conflict with the outcome of the compiler pass we propose in Section 4.2.1, the compiler
proceeds and exploits the sharing opportunity. Invalid configuration is created when the
sharing range is larger than the CUDA shared memory size. This can be enforced by vector
and worker clauses that map loop iterations to threads of one thread block and change the
thread block size across x and y dimensions, respectively. The conflict mostly occurs when
gang clause is used. gang clause asks the compiler to map each iteration to a thread block.
This can have conflict with the compiler pass we presented in Section 4.2.1, if the compiler
decides to map this loop to threads of the thread block. In the case of conflict, the compiler



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 25

can limit the sharing range, e.g. sharing only across one dimension of the grid and ignoring
the sharing along the gang loop, or even ignoring the sharing optimization, in the worst
case.

Alternative cache implementations To the best of our knowledge, currently there
are no commercial or open source OpenACC compilers that support the cache directive.
Therefore, we are unable to compare performance of our implementation to other studies.
We studied several compilers (i.e. PGI and Omni) but found none of them supporting the
cache directive. We compiled the kernels with PGI Accelerator compiler 16.1 and found out
that the compiler ignores the cache directive and does not generate shared memory CUDA
code. We also investigated several open source frameworks, e.g. RoseACC, accULL, and
Omni compiler, of which none had an implementation for the cache directive.

6.5 Cache Coherency

As stated by OpenACC specification [OpenACC2013; OpenACC2015], it is possible to
write an accelerator parallel/kernels region that produces inconsistent numerical results.
This is because some accelerators (e.g. GPUs) implement weak memory model. In weak
memory model, memory coherency is not supported between operations executed by
different threads nor between subsequent operations of a single thread, unless operations
are separated by an explicit memory fence. This is the programmer’s task to ensure the
correctness of the application is not compromised by the weak memory model. Similarly,
since variables and subarrays listed in the cache directive are part of the memory hierarchy,
we assume weak memory model for the cache directive as well.

We explain the behavior of our implementation of the cache directive under this weak
memory model under two major scenarios: i) one thread has the copy, the thread writes
to the copy, and all threads attempt to read and ii) multiple threads have copies, multiple
threads write to their copy, and all threads attempt to read. The behavior is summarized in
Table 5. The behavior is very similar to CUDA behavior when multiple threads attempt to
write to the same memory location asynchronously. Here we assume write-back policy for
the cache implementation.

The first scenario assumes that one thread has a copy of a data in its cache, and no
other thread has a copy of this data. Write operations to this local copy (by the thread) are
immediately visible to the thread (marked as #1 in the table). As the thread leaves the cache
region, the global memory will be updated by the latest copy available in the cache. While
the kernel is running, threads that complete their read access before this update read the old
value. Threads that complete their read access after this update read the new value. This
behavior is marked as undefined in the table (#2). Once the kernel runs all the threads and
completes its execution, the global memory has the new value rewritten by the thread (#3
in the table).

The second scenario assumes that multiple threads have copies of a data in their cache
and one or more threads write their local copy. Since our implementation shares the cache
among a range of threads (thread block), write operations from other threads to their local
copy is visible to the range of threads that share the cache. Accordingly, a thread might read
the value written by itself or other threads (#4 and #5 in the table). Our implementation
guarantees that one write from the threads updates the cache, but the thread that updates
the cache is unspecified. Similar to the first scenario, once a thread leaves the cache region,
the global memory will be updated by the latest copy that is in the cache. Once the kernel



26 A. Lashgar and A. Baniasadi

Table 5 Behavior of our weak memory model cache directive implementation under two scenarios:
one write multiple reads and multiple writes multiple reads.

During the kernel After the kernel

Scenario
Seen by threads
that have a copy

Seen by other
threads

Seen by all threads
Only one thread
has a copy and
the thread writes
to the copy

(#1) new value (#2) undefined: old
value or new value

(#3) the new value

Multiple threads
have copies and
one or more
threads write to
the copy

(#4) undefined: old
value or new value
from any copy

(#5) undefined: old
value or new value
from any copy

(#6) undefined: the
new value from one
unspecified thread

completes its execution, the global memory has the new value written by a thread, but again
the thread is unspecified.

Overall, here the behavior for the cached and uncached data is the same. In either case,
if multiple threads write to the same memory location, one thread successfully updates the
global copy, but that thread is unspecified. Accordingly, future reads from that location
might return undefined value.

7 Related Work

Reyes et al. [Reyes2012] developed accULL to execute OpenACC applications on
accelerators. Two major components of accULL are i) source to source compiler and
ii) runtime library. The runtime library routines are implemented in both CUDA and
OpenCL. Tian et al. [Tian2013] presented an OpenACC implementation built in OpenUH
[Liao2007]. Using OpenUH, they evaluated the performance of several alternatives in
mapping loop iterations to GPU parallel threads. Lee and Vetter [Lee2014] introduced
a framework for compiling, debugging, and profiling OpenACC applications. They also
introduced a new directive, openarc, mapping OpenACC arrays to CUDA memory spaces.
CUDA memory spaces include shared memory and texture memory. Hoshino et al.
[Hoshino2014] investigated the impact of memory layout on the performance of NVIDIA
Kepler architecture, Intel XeonPhi, and Intel Xeon processors. They limit their study to
directive-based programming languages. Their study shows that having structure-of-arrays
is much more efficient than array-of-structures for Kepler and XeonPhi, while it has minor
impact on the performance of Xeon. They explain this by the cache size of these processors
(Kepler, XeonPhi, and Xeon have 110 Bytes, 128 KBytes, and 1048 KBytes of cache
per hardware thread, respectively). They also introduced a new directive for changing the
data layout of multi-dimensional arrays. Herdman et al. [Herdman2012] compared the
performance of parallel and kernels constructs under various implementations of OpenACC.
They found that most vendors focus on one of these constructs. Comparing the quickest
construct of the vendors, their performance variations found to be below 13%.



Efficient Implementation of OpenACC cache Directive on NVIDIA GPUs 27

8 Conclusions

In this paper, we studied and addressed the challenges facing the OpenACC cache directive
in NVIDIA GPUs. We used CUDA shared memory as the software-managed cache space for
implementing the directive. We presented three different methods and several performance
optimizations for implementing the cache directive, among which sharing the cache space
among multiple threads and parallelizing cache fetch and write routines are the most critical.
Our results also show that i) sharing the cache among several parallel threads is essential to
have a robust performance and ii) write-back cache outperforms write-through policy for the
majority of memory patterns. We also presented a CUDA shared memory test to understand
structural hazards and performance bottlenecks of the shared memory. Evaluating under
matrix-matrix multiplication, N-Body simulation, and Jacobi method iteration test cases,
we presented an implementation that can perform close to hand-written CUDA.

References

[AMD2012] AMD Inc., "AMD Graphics Cores Next (GCN) Architecture," Available:
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf Last visited: 6
Apr. 2017.

[Bonati2015] C. Bonati, E. Calore, S. Coscetti, M. D’elia, M. Mesiti, F. Negro, S. F. Schifano,
and R. Tripiccione, "Development of Scientific Software for HPC Architectures Using
Open ACC: The Case of LQCD," in Proceedings of 2015 IEEE/ACM 1st International
Workshop on Software Engineering for High Performance Computing in Science,
Florence, 2015, pp. 9-15.

[Fung2007] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, "Dynamic warp
formation and scheduling for efficient gpu control flow," in Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 40.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 407-420. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2007.12

[Herdman2012] J. Herdman, W. Gaudin, S. McIntosh-Smith, M. Boulton, D. Beckingsale,
A. Mallinson, and S. Jarvis, "Accelerating hydrocodes with openacc, opecl and cuda,"
in Proceedings of the 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, Nov 2012, pp. 465-471.

[Hoshino2014] T. Hoshino, N. Maruyama, and S. Matsuoka, "An OpenACC Extension
for Data Layout Transformation," in Proceedings of the First Workshop on Accelerator
Programming Using Directives, ser. WACCPD ’14. Piscataway, NJ, USA: IEEE Press,
2014, pp. 12-18. [Online]. Available: http://dx.doi.org/10.1109/WACCPD.2014.12

[Lashgar2015] A. Lashgar and A. Baniasadi, "Employing software-managed caches
in openacc: Opportunities and benefits," ACM Trans. Model. Perform. Eval.
Comput. Syst., vol. 1, no. 1, pp. 2:1-2:34, Feb. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2798724

[Lashgar2014] A. Lashgar, A. Majidi, and A. Baniasadi, "IPMACC: open source openacc
to cuda/opencl translator," CoRR, vol. abs/1412.1127, 2014. [Online]. Available:
http://arxiv.org/abs/1412.1127



28 A. Lashgar and A. Baniasadi

[Lee2014] S. Lee and J. S. Vetter, "OpenARC: Extensible OpenACC Compiler
Framework for Directive-based Accelerator Programming Study," in Proceedings of
the First Workshop on Accelerator Programming Using Directives, ser. WACCPD
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 1-11. [Online]. Available:
http://dx.doi.org/10.1109/WACCPD.2014.7

[Liao2007] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng, "Openuh:
An optimizing, portable openmp compiler: Research articles," Concurr. Comput.
: Pract. Exper., vol. 19, no. 18, pp. 2317-2332, Dec. 2007. [Online]. Available:
http://dx.doi.org/10.1002/cpe.v19:18

[Liu2016] Y. Liu, Z. Yu, L. Eeckhout, V. J. Reddi, Y. Luo, X. Wang, Z. Wang, and C. Xu,
"Barrier-Aware Warp Scheduling for Throughput Processors," In Proceedings of the 2016
International Conference on Supercomputing (ICS ’16). ACM, New York, NY, USA,
Article 42, 12 pages. [Online]. Available: https://doi.org/10.1145/2925426.2926267

[Markidis2015] S. Markidis, J. Gong, M. Schliephake, E. Laure, A. Hart, D. Henty, K.
Heisey, and P. Fischer, "OpenACC acceleration of the Nek5000 spectral element code,"
The International Journal of High Performance Computing Applications, vol. 29, issue
3, pp 311-319, Mar. 2015.

[NVIDIA2017a] NVIDIA Corp., "Profiler’s user guide: nvprof," Available:
http://docs.nvidia.com/cuda/profiler-users-guide/#nvprof-overview Last visited: 19 Jan.
2017.

[NVIDIA2017b] NVIDIA Corp., "CUDA Downloads," Available:
https://developer.nvidia.com/cuda-downloads Last visited: 19 Jan. 2017.

[NVIDIA2017c] NVIDIA Corp., "CUDA C Programming Guide," Available:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/ Last visited: 19 Jan. 2017.

[Norman2015] M. Norman, J. Larkin, A. Vose, and K. Evans, "A case study of CUDA
FORTRAN and OpenACC for an atmospheric climate kernel," Journal of Computational
Science, vol. 9, pp. 1-6, Jul. 2015.

[OpenACC2015] "The OpenACC Application Programming Interface Version 2.5,"
Available: http://www.openacc.org/content/openacc-2-5-final-specification.

[OpenACC2013] "The OpenACC Application Programming Interface Version 2.0,"
Available: http://www.openacc.org/sites/default/files/OpenACC%202%200.pdf

[Reyes2012] R. Reyes, I. Lopez-Rodriguez, J. J. Fumero, and F. de Sande, "accull: An
openacc implementation with cuda and opencl support," in Proceedings of the 18th
International Conference on Parallel Processing, ser. Euro-Par’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 871-882. [Online]. Available: http://dx.doi.org/10.1007/978-
3-642-32820-6_86

[Tian2013] X. Tian, R. Xu, Y. Yan, Z. Yun, S. Chandrasekaran, and B. Chapman, "Compiling
a high-level directive-based programming model for gpgpus," in Proceedings of the 26th
International Workshop on Languages and Compilers for High Performance Computing,
ser. LCPC 2013, 2013, pp. 105-120.


	Introduction
	Background and Motivation
	Implementations
	Emulating Hardware Cache (EHC)
	Range-based Conservative (RBC)
	Range-based Intelligent (RBI)
	Example

	Implementation Optimizations
	Cache Fetch Routine
	Cache Sharing
	Extract Sharing
	Find Sharing Width
	Renew Cache Scope
	Fetch Collaboratively
	Optimize Cache Size

	Cache Write Policy
	Index Mapping

	Experimental Results
	Cache Performance Sensitivity
	Microbenchmark setup
	Results
	Summary of findings

	Test Cases
	Development Effort
	Performance
	Occupancy
	Implementation Alternatives

	Cache Write
	Performance Portability

	Discussion
	EHC in CUDA
	Optimizing RBC
	Alternative cache targets
	Explicit mapping
	Cache Coherency

	Related Work
	Conclusions

