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a b s t r a c t 

Using software-managed cache in CUDA programming provides significant potential to improve memory 

efficiency. Employing this feature requires the programmer to identify data tiles associated with thread 

blocks and bring them to the cache explicitly. Despite the advantages, the development effort required to 

exploit this feature can be significant. The goal of this paper is to reduce this effort while maintaining the 

associated benefits. To this end, we first investigate static precalculability in memory accesses for GPGPU 

workloads, at the thread block granularity. We show that a significant share of addresses can be precal- 

culated knowing thread block identifiers. We build on this observation and introduce TELEPORT. TELE- 

PORT is a novel hardware/software scheme for delivering performance competitive to software-managed 

cache programming, but at no extra development effort. On the software side, TELEPORT’s static analyzer 

parses the kernel and finds precalculable memory accesses. We introduce Runtime API calls to pass this 

information to hardware. On the hardware side, this information is used to fetch the data required for 

each thread block into shared memory before the thread block starts execution. With this hardware sup- 

port, TELEPORT outperforms hand-written CUDA code as a result of the associated DRAM row locality 

improvement. Investigating a wide set of benchmarks, we show that TELEPORT improves performance 

of hand-written implementations, on average, by 32% while reducing development effort by 2.5X. Our 

estimations show that the hardware overhead associated with TELEPORT is below 1%. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Conventional GPUs have had a small cache per core to buffer

nput/output of the graphical pipeline. This buffer is critical to the

erformance of the processor as it facilitates avoiding significant

mount of global synchronization and DRAM accesses. Later, in

he GPU computing era, GPGPU programming models introduced

 new memory hierarchy, called shared memory in CUDA (or lo-

al memory in OpenCL), to allow programs to take advantage of

his buffer. 1 The new memory hierarchy is a software-managed

ache (the same buffer in graphical pipeline) and can be shared

mong collaborating threads (known as thread blocks). This cache

an be exploited in various ways to improve kernel’s memory effi-

iency [24,38,42] . By using the software-managed cache, compared
� This work is supported by the Natural Sciences and Engineering Research Coun- 

il of Canada (NSERC). 
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o hardware-managed cache, the programmer can assure the data

ill not be evicted by other cache requests. 2 Also parallel threads

an fetch the data tile collaboratively to improve memory-level

arallelism. Typically, software-managed cache accesses have 8X

igher bandwidth [41] and 20X lower delay [42] than DRAM ac-

esses and fetching the data from the cache is 32X more energy-

fficient than DRAM [5] . 

Programming the software-managed cache, however, involves

remendous development effort (defined as the amount of effort

equired to develop the software, estimated by the number of lines

f code.). Firstly, the programmer should identify the data to be

etched into the cache. Candidate data are the arrays representing

igh temporal/special locality. Secondly, code should be modified

o add an extra array explicitly representing the software-managed

ache. To this end, two set of indexes should be maintained; global

nd shared memory spaces. 
2 Cache is allocated at the dispatch time of thread block and deallocated at the 

nd of its execution. 

https://doi.org/10.1016/j.micpro.2018.09.004
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Fig. 1. Comparing three different implementations of Matrix-matrix Add and Jacobi 

iteration. Bars report kernel time and numbers below the bar indicate the develop- 

ment effort, normalized to Baseline (Effort is estimated by the number of lines of 

code.). 
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3 2 factor accounts for one store and one load. 
In this paper, we introduce TELEPORT, a hardware/software

mechanism, to partially offload the shared memory development

effort from the programmer to the compiler, while not sacrificing

performance. Under TELEPORT, the compiler analyzes CUDA ker-

nels to statically identify the data tiles assigned to each thread

block. Later, during runtime, hardware loads the designated tiles

into the software-managed cache in advance for each thread block.

When both TELEPORT and hand-written CUDA versions implement

similar algorithms, TELEPORT can outperform CUDA versions via a

unique hardware optimization, improving DRAM row locality. 

On the software side, we develop a static analyzer to parse the

kernel, identify the candidate arrays, and determine data ranges

that each thread block accesses. Extra procedure calls are intro-

duced to pass this information in an abstract form to GPU. The

procedure calls configure preload table in the hardware, before ker-

nel launch calls. These steps can be fully integrated into the kernel

compilation phase. 

On the hardware side, a logical preload table per kernel is

maintained. Upon dispatching a new thread block to GPU core, the

thread block dispatcher issues a burst of memory requests to fetch

the thread block’s data, using the information in preload table. All

threads of the thread block are put on hold till tiles are loaded

completely. Putting the thread block on hold also stops threads

from issuing redundant memory accesses, avoiding the generation

of excessive memory bandwidth traffic (We also study alternatives,

leveraging timeliness and bandwidth demand to maximize perfor-

mance.) 

To take a glance at the performance and development ef-

fort advantages of TELEPORT, we present a subset of findings in

Fig. 1 where we compare three different implementations of two

benchmarks: matrix-matrix addition (A + B = C) and Jacobi it-

erative method (See Section 4 for methodology.) The first imple-

mentation (Baseline) does not use the software-managed cache.

The second implementation (Hand-written) employs the software-

managed cache. The third implementation (TELEPORT) analyzes

the source code of the Baseline implementation and takes ad-

vantage of the opportunities available for using software-managed

cache (notice that this implementation relies on hardware sup-

port.) Below we explain each benchmark. 

Matrix-matrix addition. Under Baseline, every thread calcu-

lates one element of the output matrix. While performance is very

poor, the development effort is fairly low. Under Hand-written,

threads of every thread block collaboratively fetch tiles of A and

B to the software-managed cache and calculate the sum. This im-

plementation exploits data locality among threads of the thread

block and removes redundant memory fetches within thread block.

While performance is very high, Hand-written implementation de-

mands higher development effort compared to Baseline (2.25X

greater). Under TELEPORT, development effort is similar to Base-

line. During the compile time, the static analyzer parses the Base-

line’s kernel to specify the ranges of A and B that are assigned to
ach thread block. Finding opportunities for caching A and B, the

ompiler injects API calls before the kernel launch to configure the

reload table for the kernel. With hardware support, the input tiles

re fed to the thread block during runtime through the software-

anaged cache. As reported, TELEPORT outperforms Hand-written

y 23%. As we explain later, part of this improvement comes from

owering the number of dynamic instructions. 

Jacobi iterative method. In this benchmark, every thread calcu-

ates one element in the output by applying the smoothing func-

ion over nine elements (8 neighbors plus the element itself). This

esults in a strong data spatial locality among the thread inputs

ata as threads use adjacent elements to calculate the output.

nder Baseline, threads fetch the elements from global memory

eparately. This implementation relies merely on memory access

oalescing capabilities of hardware [27] . Hand-written fetches a

ile of data, covering the input of all collaborating threads, into

he shared memory. This lowers the global memory load instruc-

ions by nearly 9X (for a tile of 16 ∗16 threads, Baseline performs

6 ∗16 ∗9 loads and Hand-written performs (16 + 1) ∗ (16 + 1) ∗ 1

oads.). But not all of this gain translates to speedup, since Hand-

ritten need to access the shared memory for (16 ∗16 ∗9) ∗2 times 3 ).

ELEPORT analyzes Baseline kernel and identifies the input tile as-

ociated with collaborating threads. This, combined with hardware

upport, lowers the development effort of Hand-written by 2.88X

nd improves its performance by 6%. 

In this paper, we investigate a wide set of benchmarks and

how TELEPORT improves performance of Baseline and Hand-

ritten implementations, on average, by 56% and 32%, respectively.

e also show TELEPORT lowers development effort by 1.46X to

.4X, compared to Hand-written. TELEPORT uses the unused space

n the software-managed cache of the GPU core as a buffer for

toring tiles. The hardware overhead associated with TELEPORT in-

ludes the preload table and TELEPORT’s controller unit (which are

hared among GPU cores) plus an array of tags per GPU core for

ndexing the software-managed cache. Our estimations show that

he hardware overhead is below 1%. 

In summary we make the following contributions: 

– We investigate static precalculability of memory accesses in

CUDA kernels, at the thread block granularity. To this end, we

develop a static analyzer to parse one CUDA kernel at a time.

This analyzer examines every array index in the kernel to de-

termine if it is precalculable. A precalculable index is an index

whose range of values can be decided prior to kernel launch,

by knowing the thread block identifier. Otherwise, the index

is non-precalculable. We investigate 16 benchmarks and show

that the majority of indexes are in fact precalculable. 

– We introduce a simple abstract form to encapsulate the static

analyzer information. We introduce API calls to covey this in-

formation to hardware. The information represents the range

of data assigned to each thread block as a parameter of thread

block identifier. During runtime, hardware evaluates the identi-

fier and precisely determines the range of data assigned to each

thread block. 

– We introduce a low-overhead hardware mechanism to store the

encapsulated information, calculate the range of data assigned

to each thread block, and load the data for thread blocks. 

– We evaluate our hardware/software scheme, TELEPORT, using

12 benchmarks that have large number of precalculable in-

dexes. We show TELEPORT’s performance and development ef-

fort advantages are remarkable. We also show TELEPORT im-

proves DRAM row locality. This row locality improvement is

achieved while keeping the number of memory accesses as low

as the baseline. 
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Fig. 2. An example to clarify the static analyzer operations. 
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Fig. 3. The number of arrays and indexes identified by the static analyzer. 
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The remainder of this paper is organized as follows. In

ection 2 , we investigate static precalculability of memory accesses

n GPGPU workloads. In Section 3 , we introduce TELEPORT. In

ection 4 , we overview experimental methodology. In Section 5 ,

e investigate the performance and development effort advantages

f TELEPORT. In Section 6 , we estimate hardware overhead of TELE-

ORT. In Section 7 , we review previous work. Finally, Section 8 of-

ers concluding remarks. 

. Static precalculability of memory accesses 

In this Section, we investigate static precalculability of memory

ccesses in GPGPUs. In particular, we investigate the static pre-

alculability of memory accesses in CUDA kernels. We limit the

nalysis to global memory space as we found it to be the most

ontributing space to performance. We developed a static analyzer

arsing one CUDA kernel at a time. For each kernel, the static

nalyzer performs three phases. First, the analyzer forms a list

f variable names which are listed in the kernel’s arguments as

ointer variables. These pointers essentially point to a location in

he global memory. Within the kernel, each pointer is treated as

rray. Second, for each of these arrays, the static analyzer extracts

he array indexes which are referred to in the kernel body. Finally,

he static analyzer examines static precalculability of the value of

ach index. Fig. 2 clarifies the three phases of our static analyzer.

elow we explain our definition of static precalculability and re-

ort the findings of static analysis under different CUDA kernels. 4 

.1. Static precalculability 

We classify array indexes into statically precalculable, quasi-static

recalculable , and non-precalculable , based on the static precalcu-

ability of the index value. We declare the precalculability of in-

ex values based on the operators (add, multiply, shift, etc.) and

erms (variables or constants) constructing the index expression.

e identify precalculability in two steps; processing operators and

rocessing terms. 

Processing operators . We consider an index as non-

recalculable if it is composed of any operator other than addition,

ubtraction, and multiplication. As we clarify later, this reduces

ardware complexity for address calculations on precalculable

ddresses. 

Processing terms . If the index is not found non-precalculable in

he previous step, then the analyzer examines the terms of the ex-

ression to check precalculability (either statically or quasi-static).

he index is statically precalculable, if the terms have constant val-

es (e.g. a[0] or a[blockDim.x] in CUDA). The index is quasi-static
4 Hereafter, by array we refer to every array identified in first phase of static 

nalysis. Also array index is an array index extracted in the second phase. 

i  
recalculable, if the memory index term depends on at least one

uilt-in CUDA thread identifier ( threadIdx or blockIdx ). Since the

hread and thread block identifiers are known at the time of dis-

atching the thread block, we refer to this type as quasi-static pre-

alculable. The index is non-precalculable, if the memory index

erm depends on a runtime variable. A runtime variable can be a

emory location (e.g. a[b[0]] ) or a control-dependent variable (e.g.

[condition ? 1:0] ). 

.2. Results 

Here we report static precalculability findings in 16 bench-

arks, as measured by our static analyzer (for methodology refer

o Section 4 ). Fig. 3 reports the number of unique global memory

rrays found in the kernels. These arrays are declared as pointer

ariables in the kernel’s arguments. The figure also reports the

umber of array indexes found in the kernel. 5 In the case of mul-

iple kernels in the benchmark (which is the case for BKP, BPT,

N, RDC, and SRD), we report the summation of arrays and in-

exes which are found in each kernel. As shown, the number of

rrays ranges from two (in NNC benchmark) to 15 (in BPT) while

he number of array indexes ranges from two (in HSP) to 71 (in

PT). 

Fig. 4 complements Fig. 3 and reports the breakdown of ar-

ay indexes into statically precalculable, quasi-static precalculable,

nd non-precalculable. As reported, none of the array indexes are

ound statically precalculable in the evaluated kernels and a sig-

ificant portion of array indexes are found quasi-static precalcu-

able. There are four subcategories of non-precalculable indexes:

i) induction variable dependence, (ii) indirect addressing, (iii) con-

rol dependent, and (iv) sophisticated operation. In NNC, NN, and

DC, non-precalculable array indexes depend on a loop induction

ariable. While we list them as non-precalculable in the break-

own, they may also be considered as quasi-static precalculable,

f the boundaries of the loop are precalculable (which is the case
5 For indexes, we only report memory reads. 
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Fig. 4. Breakdown of array indexes into statically precalculable, quasi-static pre- 

calculable, and non-precalculable. Non-precalculable indexes either depend on in- 

duction variable (Induction), another memory load (Indirect), a control statement 

(Control), or use a sophisticated operator (Operator). 
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for these benchmarks 6 ). For instance, in NN, 17 non-precalculable

array indexes depend on an induction variable, whose range can

be evaluated statically. In BPT and FLD, non-precalculable array in-

dexes depend on a load from another array. In LPS and MUM, non-

precalculable array indexes depend on control statements. In FWL,

non-precalculable array indexes use the AND operator (&). In BFS,

one of the non-precalculable array indexes depends on an induc-

tion variable and the other non-precalculable index depends on a

load from another array. 

Generally, a large portion of array indexes are found to be

quasi-static precalculable (up to 100% in many benchmarks). Quasi-

static precalculable indexes only depend on CUDA threadIdx and

blockIdx variables which are evaluated at the time of dispatching

the thread block. Hence, during runtime, a range of the data that

each thread block accesses can be precalculated. In the rest of the

paper, we build on this observation and propose TELEPORT hard-

ware/software scheme to take advantage of the opportunity. 

3. TELEPORT 

3.1. Software side 

The software side of TELEPORT includes (i) static analyzer

(which we described in Section 2 ) and (ii) an API for passing static

analysis information from CUDA applications to GPU hardware, at

the kernel launch time. This information is passed for the array

indexes which are marked as precalculable by static analysis. The

information guides the GPU to fetch data chunks required by each

thread block, after dispatching the thread block and before issuing

any instruction from individual threads of the thread block. The

API passes the information to the GPU in an abstract form. Be-

low, we first discuss the essence of information which is needed

for precalculating the demand addresses and introduce the API to

pass that information. Secondly, we present an example to clarify

the API usage. 

3.1.1. API 

If the index is marked as precalculable, static analysis evaluates

the array index as an expression of (i) thread identifiers and (ii)

constant terms. During the peiod of parsing this expression, we

only evaluate thread IDs to determine the index value. Knowing

the thread IDs that belong to each thread block, the compiler stat-

ically specifies the domain of values that index may have within
6 Here minimum and maximum values of the induction variables can be obtained 

from the loop statements statically. Then we can relax the induction dependency 

constraint and evaluate the indexes as quasi-static precalculable as the range of in- 

duction variables are evaluated statically. 

l

m

 

ach thread block. The domain of values of an index is the range

etween minimum and maximum values that index may have.

hread blocks have different IDs and, accordingly, the minimum

nd maximum varies for each thread block. Since thread block IDs

re evaluated during runtime, the compiler passes the essential in-

ormation to hardware and allows hardware to calculate the mini-

um and maximum at runtime. Below we elaborate on the essen-

ial information that has to be passed to hardware. 

In order to determine the data chunk of each thread block, the

tatic analyzer looks for the minimum and maximum value of the

rray index for each thread block. The compiler evaluates the in-

ex expression to specify its minimum and maximum values based

n the fact that in CUDA there are four three-dimensional thread

dentifier variables: gridDim, blockDim, blockIdx , and threadIdx . The

ndex expression can be reduced to only one variable ( blockIdx )

rovided that: (i) gridDim and blockDim are constant terms within

 particular kernel and can be evaluated as a constant value, (ii)

owest and highest values of threadIdx are constant, and (iii) block-

dx is determined at runtime upon dispatching the thread block 

Applying the above assumptions to any precalculable array in-

ex (statically precalculable or quasi-static precalculable) simplifies

he index to an expression of constant values and only one runtime

ariable ( blockIdx ). In general, precalculable array index expression

an be presented in the polynomial form of Eq. (1) . 

 = a 0 + 

n ∑ 

i =1 

(a i × bIdx i ) (1)

here a i for 0 ≤ a i ≤ n are life-time constant terms, bIdx is block-

dx , and n is the degree of polynomial. If an array index is con-

tant (or statically precalculable) then a i for 1 ≤ a i ≤ n is zero. An

rray index is affine constraint of degree one if a i for 2 ≤ a i ≤ n is

ero. Similarly, array indexes with affine constraint of higher de-

rees are possible. To simplify API and hardware support, here we

imit TELEPORT to arrays having indexes with affine constrains of

egrees one or lower (the degree of array index can be identi-

ed by the static analyzer by simply searching for the number of

lockIdx variables that are multiplied. In the evaluated benchmarks,

e found all quasi-static precalculable in the first degree or linear

olynomial.) 

For every precalculable array index, the static analyzer finds a 0 
nd a 1 by parsing the dependency graph. It returns the pair of a 0 
nd a 1 to specify minimum and maximum values of index, based

n varying values of threadIdx . Then, the proposed API passes

wo ( a 0 , a 1 ) pairs, one for the minimum and the other for the

aximum, to guide the GPU in specifying the lowest and highest

alues of the thread block’s data. On the hardware side, this

nformation is used to dynamically calculate the minimum and

aximum values of indexes, provided that the value of the last

nevaluated variable, blockIdx , is known at the time of dispatching

he thread block. Minimum/maximum point to the beginning/end

f the range of addresses that threads of thread blocks may

equest. After calculating the range of address, the hardware sends

 burst of read requests to the memory controller. This fetches the

ntire range into a buffer on the GPU core that the thread block is

ispatched to. The core starts issuing instructions from this thread

lock as soon as the entire range is fetched. 

The proposed API prototype is shown in Listing 1 . This proce-

ure sets registers on the GPU before kernel launch and simplifies

alculating the address of continuous data chunk of each thread

lock required by TELEPORT. TELEPORT controller unit then calcu-

ates the range of data using the following linear equations: 

in = basept r + t ypesize × (blockIdx.x × minbidxp 

+ blockIdx.y × minbidyp 

+ blockIdx.z × minbidzp + minof f set) (2)
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Table 1 

Output of static analysis determining the precalculable array indexes, affine index expressions of degree one, and 

the minimum and maximum value of index. 

Array name Line# Extracted index expression Index Status min/max 

a1 a0 

mask 8 

nodes 11 (blockIdx.x ∗ blockDim.x) + threadIdx.x precalculable blockDim.x 0/blockDim.x 

nodes 12 

nodes 12 

cost 16 

edges 14 i Induction – –

visited 15 edges[i] Indirect – –

Listing 1. Proposed API for passing per- thread block preload information. 

Listing 2. CUDA kernel in BFS. 
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Listing 3. API calls for passing static analysis information to GPU. 
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ax = basept r + t ypesize × (blockIdx.x × maxbidxp 

+ blockIdx.y × maxbidyp 

+ blockIdx.z × maxbidzp + maxof f set) (3) 

.1.2. Example 

In this section, we explain the mechanism of passing infor-

ation from the static analyzer to the GPU via runtime API. We

verview a test case; BFS benchmark. 

Listing 2 presents the kernel of BFS in CUDA, as available in

odinia [7] . The static analyzer lists the following procedure argu-

ents (or global memory pointers) as candidates for loading early:

odes, edges, mask, visited, cost , and over . It parses the kernel body

nd extracts all array reads from these arrays. Table 1 shows the

ist of identified read accesses. The first and second columns list

rray names and the corresponding lines of the code in Listing 2 ,

espectively. The third column reports the index expression of

he array access. Based on the terms and operators composing

he expression, the fourth column reports whether the index is
recalculable or not. 5 out of 7 indexes are marked as precalcu-

able. Two array accesses are found non-precalculable since static

nalysis is unable to simplify the index expression to only thread

dentifiers and constant values, e.g. line #14. For precalculable ar-

ay indexes, static analysis extracts the minimum and maximum

ossible values of the index. This returns the minimum and max-

mum, if the index expression is an affine expression of degree

ne. 

There are three unique precalculable array indexes in this ex-

mple which are evaluated to single common index expression. Ac-

ording to the terminology of Eq. (1) , blockIdx.x is bIdx i , blockDim.x

s a 1 , and threadIdx.x is a 0 in this expression. Replacing minimum

nd maximum values of threadIdx.x in the expression returns the

inimum and maximum values of the index expression. Minimum

nd maximum values of threadIdx.x are zero and blockDim.x − 1 ,

espectively. This information is passed to GPU through cudaSetC-

ATracker API calls, one call per unique index. 

Listing 3 shows the cudaSetCTATracker calls passing static anal-

sis information to the GPU just before the kernel launch. cud-

FlushCTATracker informs the GPU to flush and clear prior informa-

ion of the CUDA stream on preload table, indicating a new kernel

s about to be launched. Subsequent cudaSetCTATracker invocations

ass loading information for one continuous data chunk at a time.

n Listing 3 , there are three cudaSetCTATracker calls to specify the

ata region for mask, visited , and nodes . For each call, the first argu-

ent specifies the base address of the array. The second argument

asses the size of each array element in bytes. Next eight argu-

ents pass blockIdx products and offsets so the GPU can calculate

he minimum and maximum addresses for each thread block at

untime. As stated earlier, the GPU calculates the minimum and

aximum addresses using Eqs. (2) and (3) . 

.2. Hardware side 

Below we explain hardware modifications of TELEPORT. 
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Table 2 

GPGPU-sim configurations for modeling GTX 480. 

GPU chip 

GPU cores 15 

Memory controllers 6 

Sub partition / memory controller 2 

GPU core 

L1 Cache 16KB, 32 sets, 4-way 

Shared Memory 48KB, 32 banks 

# of Threads 1536 

Maximum concurrent thread blocks 8 

# of registers 32,768 32-bit 

Warp scheduler gto 

Memory controller 

L2 Cache / sub partition 64KB, 64 sets, 8-way 

DRAM scheduler FR-FCFS 

Table 3 

Benchmark details. 

Abbr. Name Source 

BFS Breadth First Search Rodinia 

BKP Backpropagation Rodinia 

BPT B + Tree Rodinia 

EDS Edge detection (Sobel filter) Third-party 

FLD Fluide Animate PARSEC 

FWL Fast Walsh Hadamard Transform NVIDIA SDK 

HSP Hotspot Simulation Rodinia 

JAC Jacobi Iteration PGI Compiler 

LPS Laplace 3D GPGPU-sim 

MMA Matrix-matrix add Third-party 

MUM MUMmerGPU GPGPU-sim 

NNC Nearest Neighborhood Rodinia 

NN Neural Network GPGPU-sim 

PTF Pathfinder Rodinia 

RDC Reduction NVIDIA SDK 

SRD Speckle Reducing Anisotropic Diffusion Rodinia 
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3.2.1. Preload table 

The proposed API calls allow the compiler (or optionally the

programmer) to pass the preload information to hardware. Hard-

ware uses this information to dynamically load the data regions

associated with each thread block. To maintain this information in

the hardware, we propose enhancing thread block dispatching unit

with a table; refers to as preload table. Each row of preload table

stores the information passed by a single API call. Each row reg-

isters base pointer, data type size, minimum products, and maxi-

mum products. 

3.2.2. TELEPORT controller unit 

The proposed controller unit is shared among all thread blocks

and resides in the thread block dispatching unit. This unit reads

every valid row of preload table to load the data region associated

with the ready-for-dispatch thread blocks. Upon dispatching every

thread block, the controller reads each row of the preload table,

calculates the boundary of data region of the row using Eqs. (2)

and 3 , and issues a burst of requests per row to load the data

region. Requests are issued from the thread block dispatcher unit

to the memory controllers. In each request, the controller attaches

the network address of the target GPU core (the core on which the

thread block is dispatched) as the destination. This allows the net-

work to route the reply packets from DRAM directly to the target

core. On the core, the loaded data is stored in buffer. 

3.2.3. Data buffer 

TELEPORT extends GPU cores with a logical buffer to store the

data loaded via the TELEPORT controller unit. The buffer stores the

loaded data for outstanding thread blocks of the core. The buffer

is also responsible to count the number of received packets for

each newly scheduled yet-stalled thread block and signal the warp

scheduler to activate the thread block once all the packets from

the TELEPORT controller unit are received at the core’s end. Phys-

ically, this buffer can be a dedicated cache or any of the already

available caches on the core (e.g. data cache or software-managed

cache). In this work, we use the unused space of the existing CUDA

shared memory as the buffer. An extra tag array is maintained

along the shared memory to create a set-associative cache out of

shared memory. The LRU cache replacement policy is used when

needed 

7 We investigate performance under TELEPORT for various

cache configurations in Section 5.3 . We also investigate the impact

of having an ideal implementation of the buffer in Section 5.2 . 

3.2.4. Load concurrency 

There might be few instructions ready to execute between the

time that it takes for TELEPORT to load the entire thread block’s

data and when a thread actually demands the data. The GPU core

can execute these instructions (in parallel to the pending memory

requests issued by TELEPORT’s controller unit) and hide the TELE-

PORT’s loading delay. However, since overlapping the thread block

progress and TELEPORT’s loading increases the hardware complex-

ity, we decided to simply stall the entire thread block until load-

ing is completed. Later, in Section 5.2 , we show the performance

potential behind interleaving the execution of thread blocks and

loading. 

4. Experimental methodology 

Modeling TELEPORT . We develop a static analyzer that high-

lights precalculable array indexes. We implemented the static ana-

lyzer standalone in Python. Analyzer parses one kernel at a time
7 We leave investigation of alternative replacement policies to future work. 

t  

p  

P

nd identifies all array accesses and determine the static pre-

ictability state of every array index within the kernel. This pro-

ides essential input for injecting cudaSetCTATracker calls. While

his can be accomplished automatically by the compiler, currently

e manually reform this information to the proposed API calls and

nject them to the benchmarks’ source code. We use GPGPU-sim

.2.2 [2] for modeling both hardware and software sides of TELE-

ORT. We model a hardware similar to NVIDIA GTX 480 as the

aseline GPU of this study [26] . Simulation details are listed in

able 2 . Warp scheduler and cache replacement policies are fixed

nd the same for both TELEPORT and the baseline. 

Benchmarks . Table 3 lists the benchmarks we used in this

ork. We used 16 benchmarks from Rodinia [7] , GPGPU-sim [2] ,

VIDIA GPU Computing SDK [28] , PGI Compiler [40] , PARSEC [4] ,

nd applications that we wrote (edge-detection by sobel filter

EDS) and matrix-matrix add (MMA)) in this work. We selected

hese 16 benchmarks as they are not merely compute-bounded

nd show tangible performance improvement under the ideal zero-

atency memory machine. We run all the benchmarks to comple-

ion. We model an ideal machine by assuming a perfect L1 cache

hich has a hit rate of 100%. Hereafter we limit evaluations to the

2 benchmarks that show strong precalculability in Section 2.2 (ex-

luding FLD, FWL, LPS, and MUM benchmarks). 

Evaluations . We measure performance in execution time (clock

ycles) when comparing different implementations of the same

enchmark (whenever different implementations come with un-

qual number of instructions.) Otherwise, we use IPC (instruc-

ions per cycle) as the performance metric. We assume a 64-entry

reload table and a 48KB 96-way associative cache tag for TELE-

ORT, unless stated otherwise. 
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Fig. 5. Occupancy is 100% in all benchmarks, except Hand-written HSP, which is 

50%. The numbers below the bar group show the ratio of dynamic instructions un- 

der Hand-written over TELEPORT. 
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B  
. Experimental results 

In Section 5.1 , we present performance improvements and de-

elopment effort savings under TELEPORT’s baseline configuration.

n Section 5.2 , we use machine models to investigate performance

dvantages, if TELEPORT hardware is optimized toward an ideal

achine. In Section 5.3 , we investigate the sensitivity of our find-

ngs under various hardware alternatives. In Section 5.4 , we com-

are runtime of TELEPORT and a hardware prefetching scheme

19] . 

.1. Baseline configuration 

In this Section, we split the benchmark set of this study into

wo sets. We use five of our benchmarks to investigate both per-

ormance and development effort of TELEPORT. This study is pre-

ented in Section 5.1.1 . Performance of remaining seven bench-

arks are evaluated in Section 5.1.2 (here TELEPORT uses the un-

sed space of shared memory as the buffer.) 

.1.1. Shared memory 

We investigate performance and development effort advantages

f TELEPORT, comparing three implementations of the benchmarks

comparing TELEPORT to two other implementations): 

– Baseline: This implementation does not use software-managed

cache. This should be prone to inefficient memory accesses. 

– Hand-written: This implementation exploits software-managed

cache to minimize off-chip memory accesses. 

– TELEPORT: Built on top of Baseline, static analyzer parses the

kernel and extracts precalculable array accesses. Using this in-

formation, cudaSetCTATracker() calls are injected before the ker-

nel launch call to set preload table in hardware. 

We limit evaluations of this section to EDS, HSP, JAC, MMA, and

TF benchmarks. It should be noted that evaluating each bench-

ark requires excessive amount of development effort to develop

 Hand-written implementation. Therefore we limit our study to

he five benchmarks listed above. Table 5 compares development

ffort of TELEPORT to Hand-written. We measure development ef-

ort in code lines. As reported, development effort improvements

ange from 1.46X to 3.4X. Below, we investigate the performance

spect. 

Fig. 5 compares execution time of these benchmarks under

aseline, Hand-written, and TELEPORT implementations. Baseline

nd TELEPORT execute the exact same kernel code. The number

elow the bar group reports the ratio of dynamic instructions

aved by Baseline and TELEPORT, compared to Hand-written. 

As shown, the proposed approach consistently improves per-

ormance compared to Baseline. This improvement is minor under

TF and significant in other benchmarks. 

Generally, TELEPORT has four performance advantages over

and-written implementation. Firstly, it executes less number of
ynamic instructions , since TELEPORT controller unit removes ex-

licit read/writes from the shared memory space. Secondly, the

ontroller unit issues the burst of memory requests in advance, ef-

ectively lowering average memory access latency . Thirdly, the con-

roller unit issues requests for the same DRAM row back-to-back,

otentially improving DRAM row locality . Finally, TELEPORT deliv-

rs higher GPU core occupancy (compared to Hand-written), since

t does not demand allocating shared memory space statically (un-

ike Hand-written). Below we discuss each benchmark separately. 

Under EDS , TELEPORT outperforms both Baseline and Hand-

ritten. Most of the speedup comes from memory latency im-

rovements. The input data for the entire thread block are fetched

ltogether, adequately earlier than the real demand. We found that

RAM row locality of TELEPORT is 1.9X and 2.7X greater than

and-written and Baseline, respectively. Meanwhile, Hand-written

xecutes lower dynamic instructions than TELEPORT. This might

eem ironic since Hand-written executes more load/stores from/to

hared memory. This is explained by observing the kernel code of

hese two implementations. Comparing kernel code of TELEPORT

and also Baseline) to Hand-written, the latter removes large num-

er of logical and control-flow instructions (Hand-written returns

ark pixel from shared memory, instead of checking the boundary

nd assuring the index falls within the range of the tile in global

emory, as Baseline and TELEPORT do). 

Under HSP , each thread block reads two 2D input tiles and

rites one 2D output tile. Hand-written performs slower than

ther implementations as its occupancy is fairly low (50%), lim-

ted by the thread block registers usage. Compiler uses extra regis-

ers for loading/storing from/to shared memory. Also TELEPORT has

dvantages in executing lower dynamic instructions than Hand-

ritten (by 2.17X). 

Under JAC , TELEPORT delivers 2.2X speedup over Baseline.

ELEPORT also outperforms Hand-written by 6% for executing

.98X lower dynamic instructions. 

Under MMA , Hand-written and TELEPORT both improve the

fficiency of memory accesses using software-managed cache. In

MA, every thread works on 12 bytes of data (three 4-byte words;

wo input words and one output word). Assuming 256 threads

er block, every thread block requires 3KB of data. Every GPU

ore runs 6 thread blocks, demanding 18KB in total. This is be-

ow the L1 cache capacity (16KB). Hand-written and TELEPORT

se shared memory space and decrease this demand and prevent

arly evictions and improve the performance. Comparing these

wo shared memory version, Hand-written executes 50% more dy-

amic instructions. Although these extra instruction only involve

wo loads from shared memory and two stores to shared memory

plus shared memory addressing calculations), this degrades per-

ormance by a significant amount since the instruction sequence of

hreads is relatively short. Table 4 compares the instruction mix of

ELEPORT and Hand-written versions of MMA. As reported, Hand-

ritten kernel includes 54% more static instructions: 2 extra loads

from shared memory space), 2 extra stores (to share memory

pace), 1 thread block sync, and 9 other instructions for shared

emory addressing. (Notice that static PTX sequence will be trans-

ated to SASS during runtime and SASS determines dynamic in-

tructions.) 

Under PTF , Baseline and TELEPORT perform close. Hand-written

mproves performance of Baseline through algorithmic modifica-

ions. PTF is 1D stencil kernel iterating for 36 times. Hand-written

educes the total number of iterations through ghost zone opti-

izations [24] . This amortizes several operations in one kernel

aunch, which significantly improves performance. 

.1.2. Shared memory free 

Fig. 6 compares performance of TELEPORT to Baseline under

FS, BKP, BPT, NN, NNC, RDC, and SRD. Significant performance
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Table 4 

Comparing instruction mix of TELEPORT and Hand-written version of MMA benchmark 

(instructions are static PTX instructions). 

Instruction TELEPORT Hand-written description 

ld 6 8 load from global/shared/param spaces 

bar 0 1 thread block sync 

cvt 3 5 datatype conversion 

mov 4 6 move 

st 1 3 store to global/shared 

add 7 10 addition 

mul 4 6 multiply 

exit 1 1 terminate thread 

Total 26 40 sum of all instructions 

Table 5 

Comparing development effort of TELEPORT to Hand- 

written shared memory version. Development effort is 

measured in code lines. 

TELEPORT Hand-written Improvement 

EDS 13 19 1.46 

HPS 21 51 2.43 

JAC 8 23 2.88 

MMA 4 9 2.25 

PTF 10 34 3.4 

Fig. 6. Comparing performance of TELEPORT and Baseline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Comparing performance of ideal TELEPORT machine models. Numbers are 

normalized to Baseline without TELEPORT. At the bottom of bars, the number indi- 

cates the speedup from zero-latency memory machine. 
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improvement can be seen under BFS and SRD. TELEPORT slightly

impacts performance of BKP, BPT, NN, NNC, and RDC. BKP, NN,

and NNC are not memory-bounded kernels, as we found ideal

zero-latency memory improves performance of these benchmarks

by less than 20%. For BPT and RDC, TELEPORT is not effective

in improving performance, since precalculable memory accesses

account for a small share. In the next section, we investigate these

benchmarks in detail using machine models. 

5.2. Machine models 

TELEPORT’s performance is prone to two limiting overheads.

The first overhead is excessive memory bandwidth usage (caused

by loads from TELEPORT controller unit). This may increase average

memory access latency since loading data tiles may slowdown the

memory subsystem. The second overhead is stalling thread blocks

till the data is completely loaded. This may harm performance if

there are not enough concurrent thread blocks to hide the latency.

In this section we introduce three machine models to isolate

and investigate the effect of these overheads. We also use machine

models to investigate (i) the share of memory accesses that are

covered by TELEPORT, (ii) DRAM row locality, and (iii) total number

of DRAM accesses. For the evaluation that follows, we assume 64-

entry preload table and an ideal unlimited fully-associative data

buffer. The machine models: 

– I-Machine is an ideal implementation resolving both overheads.

First, no memory request is issued by TELEPORT controller unit,

so TELEPORT does not impact the memory bandwidth. Second,
the controller unit instantly loads the data of each thread block

into the destination buffer, im plementing zero-latency TELE-

PORT. Hence, thread blocks are not stalled till the load com-

pletes. This machine shows the performance potential behind

the proposed scheme if all overheads are mitigated. 

– S-Machine is a semi-ideal implementation modeling the mem-

ory bandwidth demand of the loads from controller unit but

assuming a zero-latency TELEPORT. The controller unit issues

a burst of memory requests to load the data of every thread

block. But, on the core side, the data is ideally fed to threads

in zero latency, meaning thread blocks are not stalled and the

machine instantly fetches the data of each thread block. This

machine shows the performance potential behind the proposed

scheme once the overhead of stalling the thread blocks are mit-

igated, under real bandwidth restrictions. 

– R-Machine is the non-ideal implementation modeling both

overheads; the controller unit memory bandwidth usage and

stalling thread blocks until completion of the TELEPORT loads.

The only difference between this machine and the realistic im-

plementation studied (in Section 5.1 ) is the ideal buffer em-

ployed by this machine has. 

.2.1. Performance 

Fig. 7 compares performance of machine models under various

orkloads. Numbers are normalized to Baseline machine without

ELEPORT nor software-managed cache usage. I-Machine reports

he full performance potential behind TELEPORT, unleashed from

ll the overheads. Performance improvements range between 1%

in BKP) to 278% (in JAC) over the baseline. 

Performance improvement is significant in BFS, EDS, HSP, JAC,

MA, PTF, and SRD. In these cases, the buffer covers a large por-

ion of dynamic memory accesses (up to 90% in JAC). Moving from

-Machine to S-Machine, a portion of performance improvement

s lost by modelling realistic memory bandwidth usage. On aver-

ge, the memory bandwidth usage of TELEPORT impacts the per-

ormance of I-Machine by less than 6%. This is significant in PTF,
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Fig. 8. Comparing average DRAM row locality of R-Machine to the baseline. Num- 

bers above the bars indicate the ratio of the total DRAM accesses under R-Machine 

to the baseline. 

Fig. 9. Maximum buffer size for a thread block and the percentage of memory ac- 

cesses that is captured by the buffer. Buffer size for NN is 10KB (not shown in the 

figure.). 
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here the performance improvement of S- and R-Machine narrow

own to 5% and 1%, respectively. 

Slight performance improvement can be seen under NN and

NC. Under NN, all machines sustain the improvement of 8% which

s close to the performance of ideal zero-latency memory machine

10% improvement, as reported by the label below the bar group).

nder NNC, I- and S-Machine improve performance, however, R-

achine negates this. Since NNC runs under very low occupancy

8%; thread block size is 16 and 8 thread blocks are executed

oncurrently), stalling threads till TELEPORT loading completes de-

rades performance. 

The performance potential is low under BKP, BPT, and RDC. We

xplain this for each of the benchmarks separately. Performance in

KP is not heavily bounded by memory performance, as we found

hat even an ideal zero-latency memory improves performance in

KP only by 1.1X (10%, reported by the label below the bars in the

gure). This leaves little room for improving the performance with

ELEPORT. Under BPT , firstly, precalculable memory accesses ac-

ount for a small portion of the total dynamic memory accesses.

e found that only 15% of runtime memory requests are covered

y TELEPORT. BPT has many non-precalculable memory accesses

ue to indirect dependencies 8 Secondly, the data type of the data

s an struct of two 512-element arrays of int (nearly 4K per thread

lock). TELEPORT conservatively fetches entire bytes of these two

rrays. BPT kernel, however, is divergent and does not access the

hole array. One of the arrays is used thoroughly by all threads

f the thread block and the accesses to the other array is control-

ependent and therefore the array is partially accessed. Compared

o Baseline, the extra memory accesses that the controller unit is-

ues explains why TELEPORT performs poorly under BPT. In RDC ,

here are two kernels and 50% of array indexes are precalculable

n total (as reported earlier in Fig. 4 ). Indexes from one kernel are

ll precalculable while indexes from the other kernel are all non-

recalculable, due to control dependencies. Despite this seemingly

romising share, the precalculable kernel contributes less than 20%

o the total execution time of RDC. This leaves little room for im-

roving performance. 

Comparing S- to R-Machine, reveals the overhead of stalling

hread blocks till loading completes. This overhead may harm per-

ormance in applications with low occupancy, e.g. BPT (66% oc-

upancy) and NNC (8% occupancy). However, if the occupancy of

n application is high, it can tolerate this overhead. For example,

n SRD, the occupancy is 100% and R-Machine is able to improve

erformance by 59%. BFS, EDS, HPS, JAC, and MMA also have oc-

upancies of 100% which allows tolerating the latency of stalling

hread blocks and sustaining the performance improvement of the

-Machine. 

.2.2. Detailed analysis 

The controller unit generates a burst of memory requests for a

ontiguous data region. This traffic pattern can improve DRAM row

ocality by mitigating row changes. However, this will not necessar-

ly turn into a faster DRAM, since TELEPORT may simultaneously

ncrease the total number of memory requests. This is the case

hen (i) the percentage of memory accesses covered by TELEPORT

s low or (ii) the controller unit loads the entire data range while

he thread block sparsely accesses the data. Generally, to have a

aster DRAM with TELEPORT, we aim to (i) keep memory demand

s low as the baseline, (ii) deliver high row locality at DRAM and

iii) deliver high hit rate at the TELEPORT buffer. Below we inspect

hese aspects of TELEPORT. 

DRAM row locality. To increase exploitable locality, we use

he following two techniques in hardware. First, the controller
8 Indirect dependency is explained in Section 2.2 . 
nit issues requests from single data region (or single entry of

reload table or cudaSetCTATracker() call) back-to-back, avoiding

arly interleaving. Second, the memory controller prioritizes the

ontroller unit requests over the requests coming from GPU cores.

e found that the combination of these two techniques lowers

RAM row changes 9 Fig. 8 reports the average DRAM row locality

f R-Machine and Baseline. Average DRAM row locality is defined

s the ratio of total row accesses to total row changes. As shown,

-Machine generally improves DRAM row locality. Beside the im-

rovements in row locality, the number of DRAM accesses under R-

achine is as low as Baseline in most cases (except BPT and JAC).

his number for each benchmark is shown above R-Machine bars

n Fig. 8 , ranging from −5% (in NNC benchmark) to 134% (in BPT).

n BPT, the higher memory reads are explained by the conserva-

ive approach which loads entire range of data, while the kernel

parsely accesses the data. In JAC, TELEPORT loads two extra rows

nd two extra columns for each tile to cover boundaries. Although

ll the data is not required by the threads, this covers all input data

hat thread block demands. The extra data fetches increase DRAM

equests under TELEPORT by 11%, compared to Baseline. 

Coverage of the data buffer. We define coverage as the per-

entage of the demand memory requests that hit in the TELE-

ORT buffer. 10 As reported in Fig. 9 , coverage ranges from nearly

ero in RDC to 90% in NNC. The figure also reports the maximum

mount of data that is loaded into the buffer for a thread block

n each benchmark. This suggests an upper-bound for the size of

he buffer; one of the design parameters of TELEPORT. The demand

rom most of the benchmarks stays below 5 KB per thread block

except 10KB in NN). Assuming eight thread blocks per GPU core,
9 In Section 5.3 , we investigate alternatives. 
10 This includes both read or write requests. 
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Fig. 10. Comparing performance of various buffer sizes, ranging from 16KB to 

128KB. Numbers are normalized to Baseline without TELEPORT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Comparing performance of various network arbitration policies. Numbers 

are normalized to Baseline without TELEPORT. 

Fig. 12. Comparing performance of TELEPORT and MTHWP to the baseline. 
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the entire data ( 8 ∗ 5 KB = 40 KB ) would fit in the existing 48 KB

shared memory in most cases. 

5.3. Design alternatives 

Below we analyze the sensitivity of our findings under various

configurations for data buffer and also network policies for arbi-

trating the controller unit memory requests and core memory re-

quests. 

Data buffer. Fig. 10 compares performance of various buffer

configurations, ranging from 16 KB (32-way associative) to 64 KB

(128-way associative), while the line size is fixed to 128-byte. As

shown, 32KB or 48KB of cache is large enough in most cases. In-

creasing the capacity and associativity improves performance. The

optimal cache size large enough to maximize performance depends

on the benchmark (specifically, size of the loaded data per thread

block as shown in Fig. 9 ). For instance, while a 16 KB cache is large

enough for EDS, 64 KB cache is not large enough for SRD. SRD

is a heavily memory-bounded benchmark which comes with sig-

nificant performance improvement potential under TELEPORT. SRD

demands a very large amount of data to be loaded by the con-

troller unit which requires large cache resources. To maximize per-

formance for a specific cache size, the programmer can tune cu-

daSetCTATracker calls and maintain the total data size below the

hardware capacity. If the fetched data’s size exceeds the buffer

size, then lines are evicted as suggested by a simple LRU replace-

ment policy. Sophisticated replacement policies, e.g. coordinated

with the thread-block pace, can be used to maximize performance

and we leave this as future work. 

The controller unit and core memory request arbitration. In

the evaluations of this paper, we assigned higher priority to the

controller unit requests than the core traffic during network arbi-

tration. Here we compare performance of three different arbitra-

tion policies. TELEPORT-preferred always assigns higher priority to

the controller unit requests. Core-preferred assigns higher priority

to requests from cores. Alternate tries to establish a fair arbitra-

tion by switching the priority every cycle. Alternate proceeds with

TELEPORT-preferred policy in even cycles and core-preferred pol-

icy in odd cycles. As we show in Fig. 11 , the arbitration policies

perform very close (less than 1% difference on average). In CUDA

kernels, thread blocks usually write at the time near completion.

Accordingly, TELEPORT-preferred may lower the throughput, since

a large number of memory writes may stay behind the controller

unit requests. This is the case in JAC and Alternate resolves this by

time-sharing between the controller unit and cores traffic. 

5.4. Compare with Hardware Prefetching 

We have implemented Many-Thread Aware Hardware Prefetch-

ing (MTHWP) mechanism [19] to compare TELEPORT against

a well-known GPU hardware prefetching approach. Fig. 12
ompares runtime of MTHWP, TELEPORT, and the combined

THWP+TELEPORT mechanisms to the baseline. 

MTHWP is attached to L1 cache and has three prefetching ta-

les (PWS, GS, and IP) to arbitrate and decide the next address to

refetch. PWS table is trained per warp per instruction to learn the

tride. When few warps have the same stride on the same instruc-

ion, this entry is promoted to GS table to amortize the training

verhead. In other words, GS table is similar to PWS table, but only

rained per instruction. IP table is trained to prefetch an address

or another warp while executing the current warp. Arbitration as-

igns highest priority to GS table. If GS table fails to predict an ad-

ress to prefetch, priority is given to IP and then PWS tables. There

s an adaptive throttling approach on top, throttling the prefetch-

ng when it is not beneficial. We configure MTHWP with 32, 32,

nd 128 entries per PWS, GS, and IP tables, respectively. We also

et the throttling parameters to the numbers originally used by the

uthors [19] . 

As shown in Fig. 12 , runtime advantages of MTHWP, ei-

her when deployed stand-alone or along with TELEPORT

MTHWP+TELEPORT), is very limited in our benchmark set. We ex-

lain this by the behavior of the benchmarks and structure of the

refetching tables. PWS table will have a chance to be trained and

ake accurate predictions if warps are executing the same instruc-

ion multiple times. In most of our benchmarks, each load instruc-

ion is only executed once (e.g. EDS, MMA, JAC, and NNC), prevent-

ng PWS from training. This automatically stops GS table, since GS

able stores promoted entries from PWS. To have IP table making

air predictions, the target warp should have been dispatched on

he same GPU core as the prefetcher (so the prefetched data can be

ed into the warp from L1 cache). However, IP table does not have

he information on where the target warp is dispatched. In this

ase, the prefetching might only help by returning the data from L2

ache (if the timeliness condition holds). The reasons above limit

THWP in improving the runtime of our benchmarks here. Our

ndings are close to the evaluations in [29] . As shown in Fig. 12 ,

THWP prefetcher has a negligible impact on the performance.

hile TELEPORT and MTHWP both have a similar hardware over-

ead, TELEPORT is a more efficient worth of hardware investment

or runtime improvement. 
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. Hardware complexity 

We used CACTI 6.5 [25] in 40 nm to estimate the size of cache

ag arrays and global preload table. We estimated the area of a

-set 96-way tag array to be 0.009 mm 

2 . Multiplying this num-

er by GPU cores, the total area overhead of cache tag arrays is

.136 mm 

2 (15 ∗0.009). Assuming 21 bytes per entry for preload

able (1-byte for datatype size, 4-byte for pointer, 8X 2-byte for

in/max product/offsets) and 64 entries per table, preload ta-

le’s size is nearly 1344 bytes. Using CACTI, we found the area of

reload table 0.004 mm 

2 . 

Also TELEPORT controller unit needs 6 16-bit integer multipli-

rs and 6 16-bit integer adders to calculate minimum and maxi-

um range of data for one thread block in single cycle. Using high-

erformance ALUs proposed by [23] , each ALU occupies 0.071 mm 

2 

n 90 nm. This ALU occupies roughly 0.0144 mm 

2 in 40 nm, scaled

ith 0.198 ( ( 
40 nm 

90 nm 

) 2 ) scaling factor. Assuming 12 ALUs of this

ind, the controller unit area is 0.173 mm 

2 . 

Compared to GTX480 die size (529 mm 

2 ) [39] , preload table,

ache tag arrays, and the controller unit impose less than 1% over-

ead. 

. Related work 

.1. Prefetching 

Cache fetch algorithms are either demand fetch or prefetch

ethods [36] . Demand requests are actual memory requests

eeded by the application. Prefetch requests speculate actual ac-

esses and load them into the cache in advance. Prefetching mech-

nisms can solely be a hardware approach, not modifying the ap-

lication code, or accept hints from the software. While prefetch-

ng mechanisms are independent from the application flow, they

re still tightly related to and can be imagined as a concurrent pro-

ess predicting memory accesses of the main process. Overview-

ng the prefetching literature since 1978 11 , four major challenges

hould be addressed for prefetching to achieve performance im-

rovment: prefetching timeliness (distance), accuracy, excessive 

andwidth usage, and cache pollution. (i) timeliness: a prefetch re-

uest should be initiated with proper timing so it can lower the

verall memory access latency. If initiated too early, data might

e evicted in the cache before being used, returning no benefit.

f initiated too late, and near the time that demand fetch happens,

refetching will not reduce memory latency. To address this, pre-

ious work propose to set the prefetching distance statically for

he next Nth access [6,11] or adjust the distance adaptively [21,44] .

ii) accuracy: a prefetching mechanism should assure the addresses

of future demand fetches) are being predicted with high accuracy.

his might be trivial for simple patterns (e.g. iterating through an

rray sequentially [16] ), but involves a complicated compiler pass

n sophisticated patterns (e.g. pointer-chasing patterns [22] .) (iii)

xcessive bandwidth: prefetching increases the memory bandwidth

sage of the application significantly. This can negate performance,

f prefetching is wasting the bandwidth with wrong predictions

1] . Prior work suggest various heuristics to estimate prefetching

sefulness and drop/filter useless prefetching out [8,9,18,20,37,45] .

iv) cache pollution: If the prefetched data share cache space with

he demand fetch data, there is a risk that prefetching may evict

ines from the working set of the application. To address this, us-

ng a dedicated prefetch buffer or cache partitioning are suggested

12,30,32] . 

Prefetching in GPU computing has also been investigated. Ryoo

t al. [31] investigated software prefetching in the matrix multipli-
11 We refer readers to study [35] for work prior to this. 

D  

s  

c

ation test case. They found prefetching advantageous so long reg-

ster pressure does not degrade occupancy. Lee et al. [19] evaluate

everal hardware prefetching mechanisms. Generally, they found

hat memory patterns are highly predictable. They also found out

hat a significant challenge stems from excessive memory band-

idth usage and lack of prefetch timeliness. They introduced a

hreshold-based heuristic to address these challenges. Jog et al.

15] report how integrating the warp scheduler into the prefetch-

ng mechanism unchains the real performance potential behind

refetching in GPGPUs. They show that conventional warp sched-

lers keep warps at a close pace, accessing nearby cache blocks

uring short intervals. If warps are scheduled far apart, then warps

an potentially prefetch for each other. They show this careful

arp scheduling combined with a simple prefetcher can yield sig-

ificant speedup. Sethia et al. [33] used prefetching as a tech-

ique to improve energy-efficiency. They exploited prefetching to

mprove memory latency hiding. In addition, they lowered thread-

evel parallelism to save energy, while maintaining performance.

eon et al. [13] found that the memory access pattern of the

hreads within the same thread block is strongly strided. In order

o predict memory accesses of the thread block, their main chal-

enge is to find the base address and stride value. To calculate base

ddresses, the warp scheduler prioritizes a single warp (from each

hread block) to run ahead of the rest of the warp. The stride value

s calculated by subtracting memory addresses that are issued from

wo successive warps upon executing the same instruction. Laksh-

inarayana and Kim [17] propose an approach for predicting the

ddress of load instructions that depend on another load instruc-

ion. They tune the work for GPGPUs and address cache pollution

y using spare registers’ of the threads for prefetching peace re-

uirements. 

The approach taken by TELEPORT is fundamentally different

rom prefetching, as unlike prefetching, TELEPORT deals with pre-

alculating (absolute accuracy) and not speculation . Accuracy is not a

oncern in TELEPORT as it precisely precalculates the range of data

hat will be accessed within each thread block. This is achieved

n two steps: a software step that finds the range as a function

f thread block identifier and a hardware step that evaluates the

ange by assigning values to thread block identifiers. 

Prefetching and TELEPORT are orthogonal techniques and there-

ore can be employed in the same system. Under such circum-

tances, the prefetching mechanism can search TELEPORT’s buffer

efore issuing a prefetch request. This lowers prefetching mem-

ry bandwidth usage as the prefetch request might have hit in the

uffer already. 

.2. Development effort 

Fang et al. [10] proposed ELMO APIs to lower OpenCL develop-

ent effort in utilizing local memory. They explained challenges

n introducing a high-level API for local memory fetch, writeback,

nd communication. They also investigated performance of various

mplementation alternatives. They found 1.3X to 3.7X performance

mprovement over the baseline (without local memory). Using the

roposed API, programmer may save 5 to 81 lines of code (22 to

0 lines on average). 

CUDA programmers control threads of thread blocks to opti-

ize both data and computation patterns. This can fail under sce-

arios where optimizing data and computation patterns simulta-

eously is not possible. CudaDMA API [3] aims to improve both

erformance and productivity by decoupling data and computation

atterns. CudaDMA allows splitting thread block into compute and

MA warps. DMA warps manage the movement of data between

hared memory and DRAM and compute warps are responsible for

omputation. 



180 A. Lashgar et al. / Microprocessors and Microsystems 63 (2018) 169–181 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Silberstein et al. [34] propose an efficient solution to sum-

products problem on GPUs. They characterize the problem as

memory-bounded and find software-managed cache essential for

achieving high performance on GPU. The challenge is that the

memory pattern of the problem is not known up until run-time.

They suggest a CPU-side preprocessing step to compensate and dy-

namically adapt to the dataset. The preprocessing step describes

the pattern in metadata and then this metadata is passed to the

GPU to configure the software-managed cache. Our approach is

different in three ways: Firstly, our approach is not application

specific. Secondly, building on top of the baseline implementation

that is not using software-managed cache, our approach does not

impose any development effort to the programmer (while their

solution requires explicit implementation of data fetch, retrieve,

and replacement by the programmer.) Finally, while their approach

uses CPU time for preprocessing at runtime, our approach statically

analyze the GPU kernel at compile-time. 

7.3. DRAM efficiency 

Yuan et al. [43] studied DRAM row locality in GPGPUs. They

found that the memory traffic generated by cores has a very high

row locality. However, these requests are reordered on the network

on chip (NoC) that connects GPU cores to memory controllers. Built

on this observation, they suggest NoC optimizations to deliver a

performance close to that of complex DRAM schedulers. 

Jog et al. [14] observed that when a DRAM row is open,

sooner or later, most columns are read from the row. They sug-

gest prefetching more columns than the demand (adaptively set

between 8 to 16) into the L2 cache when a row is open. They show

that while this can increase the latency of demand fetch stream,

the overall impact on performance is positive as row-conflicts are

reduced. 

8. Conclusion 

CUDA programmers exploit shared memory space to reduce off-

core traffic. Although shared memory may deliver huge perfor-

mance improvement, it imposes significant development effort. In

this paper, we proposed TELEPORT as a hardware/software scheme

for addressing performance and productivity in GPGPUs. TELEPORT

is motivated by our observation on the precalculability of mem-

ory accesses in CUDA kernels. We presented our motivation that a

large share of memory accesses in CUDA kernels is statically pre-

calculable, at the thread block granularity. This means that data

tiles assigned to thread blocks can be exactly determined by know-

ing thread block identifiers. On average, and compared to hand-

written programs, TELEPORT improves performance by 32% and

lowers development effort by 2.5X. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.micpro.2018.09.004 . 
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