
Addressing Software-Managed Cache Development Effort in GPGPUs

by

Ahmad Lashgar

B.Sc., Jundi Shapor University of Technology, 2010

M.Sc., University of Tehran, 2012

in the Electrical and Computer Engineering Department

c© Graduate Advisor, 2017

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Addressing Software-Managed Cache Development Effort in GPGPUs

by

Ahmad Lashgar

B.Sc., Jundi Shapor University of Technology, 2010

M.Sc., University of Tehran, 2012

Supervisory Committee

Dr. Amirali Baniasadi, Supervisor

(Electrical and Computer Engineering)

Dr. Mihai Sima, Departmental Member

(Electrical and Computer Engineering)

Dr. Alex Thomo, Outside Member

(Computer Science Department)

iii

Supervisory Committee

Dr. Amirali Baniasadi, Supervisor

(Electrical and Computer Engineering)

Dr. Mihai Sima, Departmental Member

(Electrical and Computer Engineering)

Dr. Alex Thomo, Outside Member

(Computer Science Department)

ABSTRACT

GPU Computing promises very high performance per watt for highly-parallelizable

workloads. Nowadays, there are various programming models developed to utilize

the computational power of GPGPUs. Low-level programming models provide full

control over GPU resources and allow programmers to achieve peak performance of

the chip. In contrast, high-level programming models hide GPU-specific program-

ming details and allow programmers to mainly express parallelism. Later, the com-

piler parses the parallelization notes and translates them to low-level programming

models. This saves tremendous development effort and improves productivity, often

achieved at the cost of sacrificing performance. In this dissertation, we investigate

the limitations of high-level programming models in achieving a performance near

to low-level models. Specifically, we study the performance and productivity gap

between high-level OpenACC and low-level CUDA programming models and aim at

reducing the performance gap, while maintaining the productivity advantages. We

start this study by developing our in-house OpenACC compiler. Our compiler, called

IPMACC, translates OpenACC for C to CUDA and uses the system compile to

generate GPU binaries. We develop various micro-benchmarks to understand GPU

structure and implement a more efficient OpenACC compiler. By using IPMACC,

we evaluate the performance and productivity gap between a wide set of OpenACC

iv

and CUDA kernels. From our findings, we conclude that one of the major reasons be-

hind the big performance gap between OpenACC and CUDA is CUDAs flexibility in

exploiting the GPU software-managed cache. Identifying this key benefit in low-level

CUDA, we follow three effective paths in utilizing software-managed cache similar to

CUDA, but at a lower development effort (e.g. using OpenACC instead). In the first

path, we explore the possibility of employing existing OpenACC directives in utiliz-

ing software-managed cache. Specifically, the cache directive is devised in OpenACC

API standard to allow the use of software-managed cache in GPUs. We introduce

an efficient implementation of OpenACC cache directive that performs very close to

CUDA. However, we show that the use of the cache directive is limited and the direc-

tive may not offer the full-functionality associated with the software-managed cache,

as existing in CUDA. In the second path, we build on our observation on the limi-

tations of the cache directive and propose a new OpenACC directive, called the fcw

directive, to address the shortcomings of the cache directive, while maintaining Ope-

nACC productivity advantages. We show that the fcw directive overcomes the cache

directive limitations and narrows down the performance gap between CUDA and

OpenACC significantly. In the third path, we propose fully-automated hardware/-

software approach, called TELEPORT, for software-managed cache programming.

On the software side, TELEPORT statically analyzes CUDA kernels and identifies

opportunities in utilizing the software-managed cache. The required information is

passed to the GPU via API calls. Based on this information, on the hardware side,

TELEPORT prefetches the data to the software-managed cache at runtime. We show

that TELEPORT can improve performance by 32% on average, while lowering the

development effort by 2.5X, compared to hand-written CUDA equivalent.

v

PREFACE

This is the list of Ahmad Lashgar’s publications at University of Victoria in chrono-

logical order:

[1] Ahmad Lashgar and Amirali Baniasadi, A Case Against Small Data Types

on GPGPUs, The 25th IEEE International Conference on Application-specific

Systems, Architectures and Processors (ASAP), IBM Research, Zurich, Switzer-

land, June 18-20, 2014.

[2] Ahmad Lashgar, Alireza Majidi, and Amirali Baniasadi, IPMACC: Translating

OpenACC API to OpenCL, In poster session of the 3rd International Workshop

on OpenCL (IWOCL), Stanford University, California, USA, May 11-13, 2015.

[3] Ahmad Lashgar, Ebad Salehi, and Amirali Baniasadi, Understanding Outstand-

ing Memory Request Handling Resources in GPGPUs, In proceedings of The

Sixth International Symposium on Highly Efficient Accelerators and Reconfig-

urable Technologies (HEART), Boston MA, USA, June 1-2, 2015.

[4] Ahmad Lashgar, Ebad Salehi, and Amirali Baniasadi, A Case Study in Re-

verse Engineering GPGPUs: Outstanding Memory Handling Resources, ACM

SIGARCH Computer Architecture News - HEART ’15, Volume 43 Issue 4.

[5] Ahmad Lashgar and Amirali Baniasadi, Rethinking Prefetching in GPGPUs:

Exploiting Unique Opportunities, In proceedings of 17th IEEE International

Conference on High Performance Computing and Communications (HPCC),

New York, NY, USA, August 24-26, 2015.

[6] Ahmad Lashgar and Amirali Baniasadi, Employing Software-Managed Caches

in OpenACC: Opportunities and Benefits, ACM Transactions on Modeling and

Performance Evaluation of Computing Systems (ToMPECS), Volume 1 Issue 1,

March 2016.

[7] Ahmad Lashgar and Amirali Baniasadi. OpenACC cache Directive: Opportuni-

ties and Optimizations, In proceedings of Third Workshop on Accelerator Pro-

gramming Using Directives (WACCPD 2016), (in conjunction with SC 2016),

Salt Lake City, Utah, USA, November 14, 2016.

vi

[8] Ahmad Lashgar and Amirali Baniasadi, Efficient Implementation of OpenACC

cache Directive on NVIDIA GPUs, To appear in the International Journal

of High Performance Computing and Networking (IJHPCN), Special Issue on

High-level Programming Approaches for Accelerators.

In [1], [5], [6], [7], and [8], Ahmad Lashgar conducted the research, analyzed the

results, and prepared the draft of the manuscripts under the guidance of Dr. Amirali

Baniasadi.

In [2], Ahmad Lashgar developed IPMACC framework, conducted the research,

analyzed the results, and prepared the draft of the manuscript under the guidance of

Dr. Amirali Baniasadi. Alireza Majidi collected the benchmarks.

In [3] and [4], Ahmad Lashgar conducted the research, developed the micro-

benchmarks, collected the results, and prepared the draft of the manuscript under

the guidance of Dr. Amirali Baniasadi. Ebad Salehi collaborated in analyzing the

results.

vii

Contents

Supervisory Committee ii

Abstract iii

Preface v

Table of Contents vii

List of Tables xi

List of Figures xii

Acknowledgements xvi

Dedication xviii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Dissertation Organization . 6

2 Background 7

2.1 Programming Interface . 7

2.1.1 CUDA Model . 8

2.1.2 OpenACC Model . 9

2.1.3 Matrix-Matrix Multiplication Example 11

2.2 GPGPU Micro-architecture . 12

2.3 Software-managed Cache . 13

2.4 Terminology . 15

3 IPMACC 16

viii

3.1 Framework . 16

3.2 Methodology . 17

3.3 Experimental Results . 19

3.3.1 Standard Benchmarks . 19

3.3.2 OpenACC Benchmarking . 24

3.3.3 Compiler Performance . 25

4 Micro-benchmarking 29

4.1 Outstanding Memory Request Handling Resources 29

4.1.1 Known Architecture . 29

4.1.2 Micro-benchmarking Mechanism 32

4.1.3 Experiment Methodology . 37

4.1.4 Results . 37

4.2 Software-Managed Cache . 43

5 Efficient Implementation of OpenACC cache Directive on NVIDIA

GPUs 47

5.1 Motivation . 48

5.2 Implementations . 50

5.2.1 Emulating Hardware Cache (EHC) 51

5.2.2 Range-based Conservative (RBC) 51

5.2.3 Range-based Intelligent (RBI) 52

5.2.4 Example . 52

5.3 Implementation Optimizations . 54

5.3.1 Cache Fetch Routine . 54

5.3.2 Cache Sharing . 56

5.3.3 Cache Write Policy . 62

5.3.4 Index Mapping . 63

5.4 Experimental Results . 63

5.4.1 Test Cases . 63

5.4.2 Cache Write . 70

5.4.3 Performance Portability . 71

5.5 Discussion . 72

5.5.1 EHC in CUDA . 72

5.5.2 Optimizing RBC . 72

ix

5.5.3 Alternative cache targets . 73

5.5.4 Explicit mapping . 73

5.5.5 Cache Coherency . 74

5.6 Summary . 75

6 Software-Managed Cache for OpenACC 77

6.1 Limitations of the cache Directive . 77

6.2 Proposed Directive . 79

6.2.1 Programming Interface . 81

6.2.2 Communication Model . 82

6.2.3 Example . 83

6.2.4 Case Study: Reduction . 84

6.3 Experimental Results . 88

6.3.1 Performance . 89

6.3.2 Development Effort . 97

6.3.3 Sensitivity to Vector Size . 98

6.4 Discussion . 100

6.4.1 Programmer or automatic compiler passes 100

6.4.2 Applicability . 100

6.4.3 Implications . 101

6.4.4 Difference from the cache directive 102

6.5 Summary . 102

7 TELEPORT: Hardware/Software Alternative To CUDA Shared

Memory Programming 104

7.1 Overview . 105

7.2 Motivation . 107

7.2.1 Static Precalculability . 108

7.2.2 Findings . 109

7.3 TELEPORT . 111

7.3.1 Software Side . 111

7.3.2 Hardware Side . 115

7.4 Experimental Methodology . 117

7.5 Experimental Results . 118

7.5.1 Performance & Development Effort 119

x

7.5.2 DRAM Row Locality & Accesses 121

7.5.3 Hardware-Software Interactions 123

7.6 Hardware Complexity . 124

7.7 Summary . 124

8 Related Work 125

8.1 OpenACC . 125

8.2 GPU Micro-benchmarking . 127

8.3 Software-Managed Cache for GPUs 128

8.4 Prefetching . 130

8.5 DRAM Efficiency . 132

9 Conclusions and Future Work 133

9.1 Conclusion . 133

9.2 Moving Forward . 136

A Code Modification for fcw Directive 137

A.1 Pathfinder . 137

A.2 Matrix-matrix Multiplication . 139

A.3 Hotspot . 141

A.4 N-Body . 143

Bibliography 145

xi

List of Tables

Table 5.1 Example of cache sharing when lower specifier is a linear function

of an induction variable. Assumptions: i is an induction variable

of a parallel loop, increment step of the loop iterated by i is +1,

and thread block size is 3. 59

Table 5.2 Development effort of the benchmarks under OpenACC, Ope-

nACC plus cache, and CUDA implementations. 64

Table 5.3 Comparing occupancy of OpenACC without cache, OpenACC

plus cache (RBC and RBI), and CUDA. 67

Table 5.4 Performance improvement from RBI over the baseline OpenACC

(without cache). 72

Table 5.5 Behavior of our weak memory model cache directive implementa-

tion under two scenarios: one write multiple reads and multiple

writes multiple reads. 76

Table 6.1 Examples of determining range identifiers to direct the compiler

for SMC. 84

Table 6.2 Comparing development effort of baseline OpenACC, fcw, and

CUDA implementations in terms of the number of code lines. . . 98

Table 7.1 Output of static analysis determining the precalculable array in-

dexes, affine index expressions of degree one, and the minimum

and maximum value of index. 115

Table 7.2 GPGPU-sim configurations for modeling GTX 480. 117

Table 7.3 Comparing development effort of TELEPORT to Hand-written

shared memory version. Development effort is measured in code

lines. 119

xii

List of Figures

Figure 2.1 Hardware and software stack of accelerator-based computing. . 8

Figure 2.2 Typical GPGPU micro-architecture. 12

Figure 3.1 Comparing the execution time of OpenACC to highly-optimized

CUDA implementations. Each bar shows the duration of time

that the application spends on memory transfer, kernel execu-

tion, and kernel launch overhead. 19

Figure 3.2 Comparing the latency of CUDA and OpenCL backends for IP-

MACC under various OpenACC operations: (a) copyin, (b) copy-

out, (c) reduction (max), (d) reduction (+), (e) kernel launch. 24

Figure 3.3 Comparing the performance of IPMACC and Omni under matrix-

matrix multiplication workload. Each bar shows the duration of

time that the application spends on memory transfer and kernel

execution. Each bar group reports for particular problem size. . 26

Figure 3.4 Comparing the performance of IPMACC and Omni under a

matrix-matrix multiplication where two outer loops are merged

and flattened. Each bar shows the duration of time that the ap-

plication spends on memory transfer and kernel execution. Each

bar group reports for particular problem size. 27

Figure 3.5 Comparing the performance of IPMACC and Omni under vector-

vector addition. Each bar shows the duration of time that the ap-

plication spends on memory transfer and kernel execution. Each

bar group reports for particular problem size. 27

Figure 3.6 Comparing the performance of IPMACC and Omni under re-

duction clause. Each bar shows the duration of time that the

application spends to complete whole reduction. Each bar group

reports for particular problem size. 28

xiii

Figure 4.1 Thread-Latency plot under one load per thread and every thread

requests one unique 128-byte block. 35

Figure 4.2 Micro-benchmarking L2 cache under Tesla M2070 and K20. Com-

paring flushed to non-flushed plots clearly shows the saturation

of L2 cache after certain data size. 36

Figure 4.3 Thread-Latency plot under Tesla M2070, one load per thread,

and All-unique memory pattern. 38

Figure 4.4 Thread-Latency plot under Tesla M2070, one load per thread,

and Two-coalesced memory pattern. 39

Figure 4.5 Thread-Latency plot under Tesla M2070, two loads per thread,

and Four-coalesced memory pattern. 40

Figure 4.6 Thread-Latency plot under Tesla M2070, four loads per thread,

and Eight-coalesced memory pattern. 40

Figure 4.7 Thread-Latency plot under Tesla K20, one load per thread, and

All-unique memory pattern. 42

Figure 4.8 Thread-Latency plot under Tesla K20, two loads per thread, and

All-unique memory pattern. 42

Figure 4.9 Thread-Latency plot under Tesla K20, two loads per thread, and

Two-coalesced memory pattern. 42

Figure 4.10Thread-Latency plot under Tesla K20, three loads per thread,

and All-unique memory pattern. 42

Figure 4.11Comparing execution time of kernel under various shared mem-

ory configurations. 45

Figure 5.1 Comparing näıve and optimized cache implementations under 1D

stencil kernel listed in Listing 5.1 (30-element radius, 1K, 16K,

128K, and 2M elements.) . 50

Figure 5.2 Comparing performance of four GEMM implementations under

different matrix sizes. For each bar group, bars from left to

right represent OpenACC without cache directive, OpenACC

with cache directive implemented using RBC, OpenACC with

cache directive implemented using RBI, and CUDA. 65

Figure 5.3 Comparing performance of four N-Body simulation implementa-

tions under different number of bodies. 66

xiv

Figure 5.4 Comparing performance of four Jacobi iterative method imple-

mentations under different matrix sizes. 66

Figure 5.5 Comparing speedup from different finding sharing width meth-

ods. Numbers are normalized to the baseline OpenACC without

using the cache directive. 68

Figure 5.6 Comparing speedup from different renewing cache scope meth-

ods. Numbers are normalized to the baseline OpenACC without

using the cache directive. 69

Figure 5.7 Comparing execution time of kernel under various shared mem-

ory configurations. 70

Figure 6.1 Kernel execution/launch time of three Hotspot implementations

under different problem sizes, ranging from 128x128 to 4kx4k

chip sizes. Halo region size of (a) one element and (b) two elements. 90

Figure 6.2 Kernel execution/launch time of three Pathfinder implementa-

tions under different problem sizes, ranging from 128K to 4M

elements. Halo size of (a) two and (b) 12 elements 92

Figure 6.3 Kernel execution and launch time of three Dyadic Convolution

implementations: CUDA (CUDA), standard OpenACC (Ope-

nACC), and OpenACC+fcw (FCW). The legend below each group

denotes the size of input sequence. 93

Figure 6.4 Kernel execution and launch time of three N-Body implemen-

tations: CUDA (CUDA), standard OpenACC (OpenACC), and

OpenACC+fcw (FCW). The legend below each group denotes

the number of bodies. 95

Figure 6.5 Performance of OpenACC (OpenACC), OpenACC+fcw (FCW),

and CUDA (CUDA) implementations of matrix multiplication.

Each thread in OpenACC version calculates one element in the

output and fetches an entire row and column from global mem-

ory. OpenACC+fcw and CUDA compute by fetching rows and

columns in tiles into shared memory. 96

xv

Figure 6.6 Comparing baseline OpenACC (shown with no-fcw label) and

OpenACC+fcw, under different vector sizes and problem sizes.

(a) Pathfinder: 12 local iterations and 64, 128, 256, and 512

vector sizes. (b) Hotspot: two local iterations and 8x8, 16x16,

and 32x32 vector sizes. 99

Figure 7.1 Comparing three different implementations of Matrix-matrix Add

and Jacobi iteration. Bars report kernel time and numbers below

the bar indicate the development effort, normalized to Baseline.

(Effort is measured in the number of lines of code.). 106

Figure 7.2 Example to clarify the static analyzer operations. 108

Figure 7.3 The number of arrays and indexes identified by the static analyzer.109

Figure 7.4 Breakdown of array indexes into statically precalculable, quasi-

static precalculable, and non-precalculable. Non-precalculable

indexes either depend on induction variable (Induction), another

memory load (Indirect), a control statement (Control), or use a

sophisticated operator (Operator). 110

Figure 7.5 Comparing performance of TELEPORT to Baseline and Hand-

written versions. The numbers below the bar group show the

ratio of dynamic instructions under Hand-written over TELE-

PORT. 120

Figure 7.6 Comparing total DRAM accesses of Baseline, Hand-written, and

TELEPORT implementations. 122

Figure 7.7 Comparing average DRAM row locality of Baseline, Hand-written,

and TELEPORT implementations. 123

xvi

ACKNOWLEDGEMENTS

First and foremost, I like to express my gratitude to my supervisor Dr. Amirali

Baniasadi. His wisdom and vision paved the way through my years and his advices

and supports maintained me on the track. Above all, Dr. Baniasadi is an exceptional

human being and taught me very much.

I would also like to thank Dr. Nikitas Domopoulos. During our group meetings,

he provided invaluable comments on this work. He also made a huge effort in making

this dissertation stronger. Dr. Dimopoulos is an outstanding teacher and professional

person and I learned very much from him.

I would also like to thank my supervisory committee members and external ex-

aminer: Dr. Mihai Sima, Dr. Alex Thomo, Dr. Brian Wyvill, and Dr. Xipeng Shen.

Their valuable comments on this work improved the quality of this dissertation sig-

nificantly.

I would also like to thank staff of Electrical and Computer Engineering Depart-

ment: Moneca Bracken, Janice Closson, Kevin Jones, Brent Sirna, Amy Issel, and

Ashleigh Burns. They are very supportive and friendly people and they were always

there when I was reaching out to ask for help.

I would also like to thank Dr. Ehsan Atoofian from Lakehead University. I had

an opportunity to collaborate with him while he was on sabbatical at UVic. I admire

his dedication to work and I thank him for generously sharing his knowledge and

experience with me.

I would also like to thank my dear friend Ali Shafiee from University of Utah for

sharing his insight. He is a smart researcher and having his comments on this work

was a privilege.

I would also like to thank my colleagues Parwant Ghuman and Mattew Gara at

3vGeomatics for providing me equipments and opportunity to collaborate on three

industry-funded research projects.

I would also like to thank my family for their support and unconditional love.

Although they have been physically away, they gently prepared a favourable environ-

ment for me to focus on my study. My mother provided a profound love and moral

support. My father was the greatest inspiration and made me stronger every day by

sharing his experiences. My brother took a very good care of my parents while I was

away studying in Canada and encouraged me to focus on my research.

I would also like to thank my best friend, my partner, and the love of my life

xvii

Arghavan. She motivated me every day and encouraged me to never settle for less

and made me believe I deserve more. Her endless love and tremendous support have

been a substantial aid in my low moments.

I would also like to thank my colleagues at UVic for their support: Ali Jooya,

Babak Keshavarz Hedayati, Saman Khoshbakht, Zhe Wei, Alexandros Dimopou-

los, Mohammad Alkhamis, Mohammed Albulayli, Mostafa Rahimpour, Dr. Alireza

Akhgar, and Dr. Behnam Rahimi. They shared their knowledge with me and pro-

vided valuable comments on my research projects.

I would also like to thank my colleague and friend Ebad Salehi. He is an amazing

friend and we shared many happy moments.

I would also like to thank Tibor Szabo and Lorlina Palencia for their true friend-

ship. In my early days in Victoria, they spend so much time and effort to allow

me adapt and move to the new town gracefully. They are considerate, welcoming,

supportive, and incredible people.

Finally, I am grateful to God for all the blessings that I was destined for.

After climbing a great hill, one only finds that there are many more hills to climb.

Nelson Mandela

xviii

DEDICATION

To my lovely mother and devoted father

Chapter 1

Introduction

1.1 Motivation

For several decades microprocessor performance growth relied mainly on optimizing

performance of single CPU core by employing better designs (provided by archi-

tectural innovations) and faster and more transistors (provided by manufacturing

technology innovations) on a chip. As the technology hit the thermal wall, where all

transistors may not run at their maximum switching frequency, academia and indus-

trial experts continue to seek alternative solutions. One major trend is to redesign

software and hardware infrastructures to ideally run applications efficiently on many

slow-cores platforms rather than a single fast core. Since all types of applications may

not run efficiently on many slow-cores (primarily because the application may follow

a serial algorithm), industry shifted toward designing heterogeneous systems to pro-

vide both fast and slow platforms. In an heterogeneous system, hardware accelerators

come along the conventional CPUs to accelerate a portion of application. Designers of

heterogeneous systems leveraged both software and hardware to maximize advantages

from heterogeneous computing. On the software side, the programmer is required to

identify code regions that map well on the target accelerator. Then she explicitly

offloads these workloads from the CPU to run them on the accelerator. On the hard-

ware side, the CPU controls the operations of the accelerator and acts as an interface

(or host) to the accelerator. CPU and accelerator may or may not be on the same

chip. They may also share the same physical memory or have separated memory

spaces.

Among the most commonly used accelerators today are GPUs. GPUs were ini-

2

tially designed as a fixed-function processor but eventually evolved into a general-

purpose parallel processor (often referred to as GPGPUs). There are three reasons

why GPUs dominated other competitive accelerators (e.g. IBM Cell) at the time

they emerged: computation capability, programmability, and affordability. Firstly,

typical peak single precision FLOPs of GPUs were 10X larger than CPUs. Secondly,

developers were able to program GPUs in C. Thirdly, there was no need to acquire an

auxiliary hardware since almost every desktop computer had a GPU. Over the past

ten years, many applications have been developed for GPUs, evolving GPUs into an

efficient accelerator for both high-performance [93] and low-power [92] supercomput-

ers.

Although GPUs promise very high performance and energy efficiency, delivering

efficient implementation of an application comes at the cost of significant development

effort in low-level GPU programming models like CUDA or OpenCL. The optimiza-

tion space of GPU applications can become cumbersomely large in these low-level

models, even for well-known problems like matrix multiplication [82]. OpenACC is

a high-level programming model which is introduced to offer performance versus de-

velopment effort tradeoff. The key goal of developing in OpenACC is to simplify

the accelerator’s programming model and rely on compiler innovations to optimize

the code for the target accelerator at compile-time. Today OpenACC compilers are

rapidly evolving to implement the latest OpenACC version, integrate more optimiza-

tion passes for OpenACC kernels, and perform closer to hand-written CUDA equiv-

alent. Our goal in this dissertation is to achieve a performance very close to CUDA,

while developing applications in high-level programming models like OpenACC.

One of the key optimizations in CUDA is to use software-managed cache (or SMC

in short). SMC can be exploited in various ways to improve the kernel’s memory

efficiency [59, 89, 95]. By using the software-managed cache, compared to hardware-

managed cache, the programmer can assure the data will not be evicted by other

cache requests. Also parallel threads can fetch the data tile collaboratively to improve

memory-level parallelism. Typically, SMC accesses have 7.3X higher bandwidth [96]

and 16.7X lower delay [95] compared to DRAM accesses. Moreover fetching the

data from the cache is 32X more energy-efficient than DRAM [10]. SMC has very

high impact on GPU performance and energy efficiency as it reduces the number of

expensive off-chip data movements [85]. When strong temporal and spacial locality

exists, exploiting SMC is critical to GPU performance (as the size of the hardware

cache on the GPU is very small and insufficient to capture the localities.). The major

3

obstacle in exploiting SMC is the development effort. SMC is introduced as a separate

memory space to the programmer. The programmer is required to explicitly fetch

the data from global memory to the cache space, map addresses from global to cache

space, and write dirty data back to global memory. Utilizing SMC in CUDA involves

a major change in the code and the resulting code can be complicated to debug and

verify.

OpenACC offers the cache directive to allow OpenACC applications to exploit a

GPU’s SMC with minimal development effort. To be able to investigate the effec-

tiveness of the cache directive, we first developed our in-house OpenACC compiler

framework, referred to as IPMACC [44]. IPMACC supports OpenACC version 1.0

and implements kernels, data, and loop directives. IPMACC translates OpenACC

applications to CUDA source and uses NVIDIA nvcc to compile CUDA source and

generate GPU binaries.

We used our in-house OpenACC framework to investigate the compiler aspect

of implementing the cache directive [41, 42]. We studied various implementations

and optimization opportunities. We started with presenting the lack of efficiency

and effectiveness under a straightforward implementation. We showed the mapping

of parallel loop iterations to CUDA threads can be configured to share the cache

among several loop iterations. This, in respect, improves cache utilization and accel-

erator occupancy, yielding a significant speedup. We also designed microbenchmarks

[45, 43, 38, 36] in CUDA to deeply understand GPU memory hierarchy and im-

plement the cache directive efficiently. Applying various optimizations, we showed

our implementation of the cache directive performs close to the hand-written CUDA

version.

Although the cache directive is more productive than CUDA in exploiting SMC,

it does not offer the full functionalities of SMC as exist in CUDA. SMC in CUDA

is primarily used for i) caching read-only data for the lifetime of a thread block

(preventing conflict misses), ii) avoiding irregular access to global memory (regular

collective fetch from global memory, irregular private retrieve from SMC), and iii)

inter-thread fast on-chip communication (rather than slow global synchronizations)

[21]. The cache directive supports i and ii, but falls short in supporting the third use

of SMC. We propose a new directive, referred to as the fcw directive [40], to offer the

inter-thread communication functionality of SMC in OpenACC. This directive serves

as a compiler hint to fetch a data chunk into SMC, replace global memory accesses

with SMC accesses, allow concurrent accelerator threads to communicate through

4

SMC, and write the SMC back to global memory. We introduced a communication

model along with the fcw directive that allows communication among iterations of a

parallel work-sharing loop. We showed that the fcw directive can offer functionalities

that are missing in the OpenACC cache directive. Compared to CUDA, we showed

that the fcw directive saves significant development effort while delivers a performance

close to the hand-written CUDA version.

To lower the SMC development effort even further, we introduced a novel hard-

ware software mechanism, referred to as TELEPORT. TELEPORT offloads the SMC

development effort from the programmer to the compiler, while not sacrificing per-

formance. Under TELEPORT, the compiler analyzes CUDA kernels to statically

identify the data tiles assigned to each thread block [39]. Later, and during run-

time, hardware loads the designated tiles into SMC in advance for each thread block.

When both TELEPORT and hand-written CUDA versions implement the same al-

gorithm, TELEPORT not only delivers the same performance, but also supersedes

CUDA versions via unique hardware optimizations in improving DRAM row locality.

TELEPORT is limited by the compile-time limitations and may only be used for

read-only data. This means TELEPORT does not fully replace SMC programming.

However, when TELEPORT is applicable, it is a fully-automated pass and does not

incur extra development effort. We investigated TELEPORT under a wide set of

benchmarks and concluded that TELEPORT improves performance of handwritten

implementations on average by 32% and yet lowers development effort by 2.5X. Our

estimations show that the hardware overhead associated with TELEPORT is below

1%.

1.2 Contributions

The contributions of this dissertation are as follows.

• We introduced IPMACC open-source framework that translates OpenACC ap-

plications to CUDA and executes the OpenACC applications over CUDA-

capable GPUs. We compared IPMACC to Omni OpenACC compiler and pro-

vided insight on implementation choices that impact performance. We used

IPMACC and compared performance of OpenACC and CUDA implementa-

tions of ten different applications. We identified major limitations of OpenACC

that impose a large performance gap between OpenACC and CUDA. This is

5

presented in Chapter 3.

• We developed micro-benchmarks in CUDA to stress outstanding global memory

request handling resources in GPUs. Micro-benchmarks can be configured to

generate different memory patterns, stressing various aspects of the resources.

We ran our micro-benchmarks on two GPGPUs which have different micro-

architectures: Fermi and Kepler. We showed that under Fermi architecture the

maximum number of outstanding memory accesses is limited by the number

of uncoalesced accesses. Under Kepler architecture the maximum number of

outstanding memory accesses is limited by the number of memory instructions

a warp can execute. This is presented in Section 4.1.

• We developed micro-benchmarks in CUDA to understand the performance of

SMC in GPUs. Micro-benchmarks evaluate the performance impact of row-

major or column-major accesses, layout, allocation padding, and data type size.

We showed that the layout (2D or flattened) has minor impact on performance

and small padding in memory allocation can vastly resolve bank conflicts. This

is presented in Section .

• We presented the first work that investigates the implementation aspect of the

OpenACC cache directive on NVIDIA GPUs. We showed that a näıve imple-

mentation hardly improves performance. We provided better understanding

regarding implementation challenges and listed compile-time opportunities to

enhance performance. We also proposed three methods for implementing the

cache directive on NVIDIA GPUs. One of the implementations emulates hard-

ware cache and the other two cache a range of values. Methods differ in cache

utilization and access overhead. Investigating the design space of our proposal

under three different benchmarks, we showed that our best implementation de-

livers performance comparable to that provided by the hand-written CUDA

equivalent. This is presented in Chapter 5.

• We discussed the challenges in integrating SMC in OpenACC and limitations

of the cache directive. To overcome the challenges and limitations, we proposed

a new directive, referred to as the fcw directive. Along with the fcw directive,

we also introduced a new communication model, referred to as inter-iteration

communication. This allows loop iterations to communicate through the fast

on-chip cache, instead of global memory. We proposed an efficient method for

6

implementing the fcw directive on NVIDIA GPUs. We presented an example

usage of the fcw directive in a simple reduction case study and also evaluated

the fcw directive under six different benchmarks. We compared fcw directive to

the highly-optimized CUDA and baseline OpenACC versions. This is presented

in Chapter 6.

• We proposed a hardware/software scheme, referred to as TELEPORT, to ex-

ploit SMC fully and automatically (without a hint from the programmer nor

development effort). Static compiler passes are proposed to analyze CUDA ker-

nels and extract potentials in using SMC. CUDA API calls are proposed to

pass SMC hints to the hardware. Hardware prefetcher is proposed to preload

SMC at runtime. We evaluated the performance of TELEPORT under five

different benchmarks. We also reported advantages of TELEPORT in terms of

development effort over CUDA. This is presented in Chapter 7

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, we overview

background information about GPGPU programming models and hardware design.

In Chapter 3, we introduce our OpenACC framework, IPMACC. In Chapter 4, we

introduce our GPU micro-benchmarking and present our findings on two different

GPUs. In Chapter 5, we describe our methods for implementing the cache directive

and evaluate these methods. In Chapter 6, we introduce the fcw OpenACC directive

and investigate effectiveness of this directive. In Chapter 7, we introduce TELE-

PORT hardware/software mechanism and investigates its benefits and limitations.

In Chapter 8, we overview related work. Finally, in Chapter 9 we offer concluding

remarks and future work.

7

Chapter 2

Background

In this chapter, we overview the software and hardware of the GPGPUs. Figure

2.1 presents the hardware and software stack covering commonly-used accelerator-

based computing technologies. High-level APIs for programming accelerators include

OpenMP and OpenACC directive-based models. Conventional commercial and re-

search compilers translate OpenMP and OpenACC to low-level APIs before generat-

ing accelerator binaries. Low-level APIs for programming accelerators include CUDA,

OpenCL, and ISPC. CUDA and OpenCL programmers can inline assembly commands

using PTX and SPIR, respectively. ISPC programs are translated to CPU vector ex-

tensions, namely AVX2 and SSE4. On the hardware, low-level APIs are compatible

with different accelerators. While CUDA and PTX are specific to NVIDIA GPUs,

OpenCL and SPIR are compatible with wide variety of GPUs, CPUs, co-processors,

and FPGAs. CPU vector extensions are supported by most CPUs and Intel Xeon

Phi co-processors. The scope of this work is limited to running OpenACC directive-

based model over CUDA on NVIDIA GPUs. In the rest of this chapter, we first

overview the OpenACC and CUDA programming interfaces and then we overview

typical GPGPU micro-architecture. Finally, we overview software-managed cache

(SMC) programming in GPUs.

2.1 Programming Interface

CUDA and OpenACC are commonly used for programming GPGPUs. CUDA intro-

duces notations for developing compute kernels and launching the kernels on the GPU.

Programming in CUDA is cumbersome because i) two versions of the code should be

8

Figure 2.1: Hardware and software stack of accelerator-based computing.

maintained (CPU and GPU versions) and ii) various hardware details are exposed

to the programmer (e.g. thread identifier and memory hierarchies). OpenACC is a

standard high-level programming model [77] that hides low-level details and reduces

the complexity of GPGPU (and generally accelerator) programming. Building on top

of the serial CPU version, OpenACC allows the programmer to run the application

on the GPU by adding few directives. To run OpenACC on GPUs, one common

compilation flow is to translate OpenACC source code to CUDA source code and use

the CUDA compiler to generate the GPU binaries. Below we overview CUDA and

OpenACC programming models.

2.1.1 CUDA Model

In CUDA [64], an application is composed of host and device code. The host code

executes on CPU and the device code executes on system’s accelerator, e.g. GPU

card. The host controls the operations of the device through procedure calls to

CUDA API. CUDA allows programmers to explicitly allocate device memory and

transfer data between host and device. The host code launches kernels on the device

to harness the computational power. Kernel is executed by certain number of thread

blocks where each thread block is composed of certain number of threads (referred to

9

as thread block size). All threads share common off-chip DRAM memory or global

memory. Thread blocks may execute in any order and synchronization among thread

block is not feasible. However, threads of the same thread block may synchronize and

communicate through a fast on-chip software-managed cache, referred to as shared

memory1. Shared memory is allocated per thread block and is much faster than global

memory; e.g. under GTX 280, the latency of global memory and shared memory are

440 and 38 core cycles, respectively [100]. The number of threads per thread block

and the number of thread blocks are specified at launch time and remain constant

during the kernel execution.

2.1.2 OpenACC Model

OpenACC API introduces a set of compiler directives, library routines, and envi-

ronment variables to offload a region of code from the CPU and execute it on the

system’s accelerator [75]. This region is referred to as the kernel or accelerator region.

In essence, OpenACC introduces two types of directives: i) data management and

ii) parallelism control. Each directive has a few clauses providing fine-grain control

over the behavior of the directive. Data management directives perform data allo-

cation on the accelerator, data transfer between host and accelerator, and passing

pointers to the accelerator. This model exposes data transfer to programmers, al-

lowing manual data transfers. The data directive applies over the accelerator region,

specifying the explicit data transfers. Data is copied to the accelerator before entering

the region and copied back from the accelerator after exiting the region. The data

directive clauses specify the direction of the transfer (host to device or vise versa),

host memory pointer, and size of the transfer. Based on this information, OpenACC

compiler generates code around the accelerator region to perform the necessary allo-

cation/transfers. The second type of directives, parallelism control, hint the compiler

that the iterations of a work-sharing loop may be executed in parallel on the accelera-

tor. The directive might be followed by clauses to control the parallelism granularity,

variable sharing or privatization, and variable reduction. OpenACC introduces four

terms in loop parallelism: gang, worker, vector, and thread. In CUDA terminology,

these terms may best map to kernel, thread block, warp, and thread, respectively.

1We used the terms software-managed cache and shared memory interchangeably.

10

Listing 2.1: OpenACC and CUDA matrix-matrix multiplications.

#pragma acc kernels copyin(a[0:LEN*LEN],b[0:LEN*LEN]) copyout(c[0:LEN*LEN])

#pragma acc loop independent

for(i=0; i<LEN; ++i) {

#pragma acc loop independent

for(j=0; j<LEN; ++j){

float sum=0;

for(l=0; l<LEN; ++l)

sum += a[i*LEN+l]*b[l*LEN+j];

c[i*LEN+j]=sum;

}

}

(a) OpenACC.

__global__ void matrixMul(int *a, int *b, int *c, int len){

int i=threadIdx.x+blockIdx.x*blockDim.x;

int j=threadIdx.y+blockIdx.y*blockDim.y;

for(int l=0; l<len; ++l)

sum=a[i*len+l]*b[l*len+j];

c[i*len+j]=sum;

}

int main(){

...

bytes=LEN*LEN*sizeof(int);

cudaMalloc(&a_d, bytes); cudaMalloc(&b_d, bytes); cudaMalloc(&c_d, bytes);

cudaMemcpy(a_d, a, bytes, cudaMemcpyHostToDevice);

cudaMemcpy(b_d, b, bytes, cudaMemcpyHostToDevice);

dim3 gridSize(LEN/16,LEN/16), blockSize(16,16);

matrixMul<<<gridSize,blockSize>>>(a_d,b_d,c_d,LEN);

cudaMemcpy(c, c_d, bytes, cudaMemcpyDeviceToHost);

...

}

(b) CUDA.

11

2.1.3 Matrix-Matrix Multiplication Example

Listing 2.1a and 2.1b illustrate a simple matrix-matrix multiplication in OpenACC

and CUDA, respectively. Ignoring the directive lines, Listing 1a shows the baseline

serial multiplication of a and b, storing the result in c. Each matrix is LEN*LEN

in size. The outer loops iterated by i and j induction variables can be performed in

parallel.

Listing 2.1a shows how these loops can be parallelized using OpenACC. In this

code, the kernels directive marks a region intended to be executed on the accelerator.

The loop directive guides the compiler to consider the loop as a parallel work-sharing

loop. Programmers can control the parallelism using kernels and loop directives. As

an example of parallelism control, the independent clause is used to force the com-

piler to parallelize the loop. This clause overrides the compiler’s auto-vectorization

and loop dependency checking. In Listing 2.1a, copyin and copyout clauses ask the

compiler to copy a and b arrays from the host to the accelerator, before the region,

and copy out c array from the accelerator to the host, after the region. For each

array, the [start :n] pair indicates that n elements should be copied from the start

element of the array. (Notice that the standard does not restrict programmers to

unidimensional arrays and the matrices are flattened in this sample to perform faster

memory copies.)

Listing 2.1b shows how the parallelization can be exploited in CUDA. global

indicates the declaration of kernel code. Parallel threads execute the kernel and

operate on different matrix elements, based on their unique indexes (i and j). Inside

the host code, device memory is allocated for a, b, and c, keeping the value of the

pointers in a d, b d, and c d, respectively. Then, input matrices are copied into device

memory. Then, total of LEN*LEN light-weight accelerator threads are launched on

the device to execute matrixMul kernel. After kernel completion, the resulting matrix

c d is copied back to the host memory.

As presented in Listing 2.1, OpenACC significantly reduces the development ef-

fort compared to CUDA. OpenACC hides low-level accelerator-related code from the

programmer and provides a unified view over both host and accelerator code.

12

Figure 2.2: Typical GPGPU micro-architecture.

2.2 GPGPU Micro-architecture

For the micro-architecture side of our study, we assume a GPGPU similar to NVI-

DIA CUDA-capable GPGPUs. In such GPGPU, the chip is composed of one or more

GPU cores (also referred to as Streaming Multiprocessor or SM) connected to the

off-chip DRAM through memory controllers. This is presented in Figure 2.2. GPU

chip is composed of thread block dispatcher, cores, and memory controllers connected

through on-chip interconnection network. Thread block dispatcher interfaces to the

graphic driver, manages concurrent kernels, and issues tasks (in thread block granu-

larity) to cores. Cores have private fast L1 cache for different memory spaces (data,

constant, and texture), shared among concurrent thread blocks of the core. Shared

memory is a software-managed cache and is private to each thread block. L1 caches

are backed up by the last-level L2 cache. L2 cache is unified (meaning L2 may cache

data, constant, and texture memory spaces) and shared among all the cores. L2

cache is divided into several partitions to maximize memory-level parallelism. Each

L2 cache partition is logically associated with a memory controller. Memory con-

trollers interface to (and send/receive data to/from) the off-chip DRAM.

13

Each GPU core is a deep-multithreaded SIMD processor maintaining the context

of thousands of threads. Core has different SIMD engines for performing arithmetic,

logical, floating-point, and special function operations. SIMD width varies for differ-

ent operations, ranging from 4-wide to 64-wide in current GPUs. Also multiple SIMD

engines of the same kind may be deployed on the core to provide higher throughput for

specific operations. GPU core has immense capability in handling concurrent mem-

ory requests, suggesting a large memory-level parallelism on the chip. Depending on

the GPGPU micro-architecture, a GPU core may support 128 to 1408 concurrent

memory requests [45].

Each thread block is executed by one GPU core. The context of the thread block

is reserves on the GPU core and is not released until after the thread block completes

its execution. GPU core groups threads into coarser scheduling elements called warp.

Each warp is composed of 32 threads. Threads within a warp are executed in lock-

step over the SIMD of the core and share the same control-flow [19]. The context of

the thread block includes registers, warps, and shared memory. GPU core may run

additional thread blocks as long as the context can be reserved on the GPU core. The

GPU core runs under maximum number of threads, or 100% occupancy, if concurrent

thread blocks are not limited by the register or shared memory usage. As an example

of GPU capabilities, NVIDIA Tesla K20 [72] is composed of 13 GPU cores, where

each core supports 64 concurrent warps, 64K registers, and 48 KB of shared memory.

2.3 Software-managed Cache

Conventionally, GPUs have had a small cache per core to buffer input/output of

the graphics pipeline [18]. This buffer is critical to the performance of the graph-

ics processor as it bypasses significant amount of global synchronization and DRAM

accesses. Later, in the GPU computing era [52], GPGPU programming models intro-

duced a new memory hierarchy, called shared memory in CUDA, to allow programs

to take advantage of this buffer. The new memory hierarchy is a software-managed

cache (the same hardware component that conventionally is used as buffer in graphics

pipeline) and can be shared among collaborating threads (known as thread blocks).

This cache can be exploited in various ways to improve kernel’s memory efficiency

[59, 89, 95]. Typically, software-managed cache accesses have 7.3X higher bandwidth

[96] and 16.7X lower delay [95] than DRAM accesses and fetching the data from the

cache is 32X more energy-efficient than DRAM [10].

14

We list three reasons that GPGPU applications might benefit from software-

managed cache (SMC):

• Locality: SMC can be beneficial when there is a strong spacial locality among

concurrent threads, e.g. memory accesses of threads of the thread block fall

within a tile of data. In this case, the entire range can be fetched into SMC in

advance. This resolves cold cache misses and also maintains the data in SMC

for the life time of the thread block (protecting the tile from cache eviction due

to cache capacity.).

• Irregular memory pattern: Memory pattern of the threads of a warp im-

pacts the memory latency significantly. For example, under regular memory

pattern (that threads of the warp access subsequent words), memory accesses

are coalesced and one memory transaction is made. However, under irregular

memory patterns (that threads of the warp access arbitrary words), load/store

unit may stall and serializes the memory accesses in several memory transac-

tions. If the range of irregular memory accesses is known by the programmer,

SMC can be used to address this inefficiency. In this case, the memory range

is fetched into the SMC first and then memory accesses are mapped to SMC

(from the original global memory space).

• Local communication: SMC can be used as a communication channel among

concurrent threads of the thread block. This communication can be performed

very fast (order of tens of cycles). Without using SMC, threads are forced to

use global memory for communication which is very slow (order of hundreds of

cycles).

Listing 2.2 shows an example of employing software-managed cache in CUDA.

This example fetches a range of data from global memory (a[]) to software-managed

cache (swcache[]). Software-managed cache is allocated on Line #4. The space

(4 × 256bytes) is allocated once and then shared among all threads of the thread

block (256 threads in this example). Every write to this space will be visible to all

threads of the thread block. On Line #5, a[gid] is written to index tid of the software-

managed cache. Since tid ranges from 0 to 255 (as executed by all threads of the

thread block), swcache will be initialized to a subarray from a[] in parallel. However,

threads run in parallel and may not complete the write at the same time. On Line

#6, syncthreads() is used to synchronize the threads and make sure all threads

15

Listing 2.2: Software-managed cache example in CUDA.

01: __global__ void kernel(int *a, int len){

02: int tid = threadIdx.x;

03: int gid = threadIdx.x + blockIdx.x*blockDim.x;

04: __shared__ int swcache[256];

05: swcache[tid] = a[gid];

06: __syncthreads();

07: ...

08: }

09: int main(){

10: ...

11: dim3 gridSize(LEN/256), blockSize(256);

12: kernel<<<gridSize,blockSize>>>(a_d, LEN);

13: ...

14: }

have completed their write operation (notice that syncthreads() only synchronizes

the threads of the same thread block, not all threads of the kernel.). Beyond this

point, data can be retrieved from software-managed cache explicitly by loads and

stores from the software and is shared among all threads of the thread block.

2.4 Terminology

We use CUDA terminology [64] and define the following terms and use them frequently

in the remainder of this dissertation. Parallel work-sharing loop or simply parallel loop

refers to a loop which is marked by OpenACC API to be executed on the accelerator.

Every parallel loop has a certain number of iterations which are executed in parallel

on the accelerator. Parallel iterations refer to the iterations of a parallel loop. We

assume that each parallel iteration is mapped to one light-weight accelerator thread of

CUDA. Therefore, we use the terms parallel iteration and thread interchangeably. We

refer to consecutive iterations of a parallel loop as neighbor iterations or consequent

iterations. Accordingly, in the sequence of parallel iterations, every parallel iteration

has neighbor iterations. The definition of neighbor iterations discards the size of

neighborhood and can be of any range. For example, if a parallel loop iterates from

1 to N by one step, parallel iterations indexed by 8, 9, 10, 11, and 12 are neighbor

iterations. As another example, N-3, N-2, N-1, and N are also neighbor iterations.

16

Chapter 3

IPMACC

In this chapter, we introduce our in-house open-source OpenACC framework, called

IPMACC. We developed IPMACC to compile OpenACC for C [77] applications for

CUDA-capable accelerators1. IPMACC comes with a set of translators to generate

the CUDA code which is equivalent to the OpenACC code. After translation to

CUDA, IPMACC uses the system compiler to generate the accelerator binary from

the CUDA code. Beside the translators, IPMACC also includes a runtime library to

support dynamic memory management in OpenACC API.

Below we first overview the structure of IPMACC. Then we explain system and

software configurations for the evaluations, followed by the experimental results.

3.1 Framework

IPMACC is a research framework composed of a set of translators translating Ope-

nACC applications to various accelerator languages (e.g. OpenCL or CUDA). In ad-

dition to the translators, IPMACC comes with a runtime library to support dynamic

memory management operations in OpenACC API. Compared to similar frameworks

[81, 90], IPMACC is designed to translate OpenACC directly to a low-level accelerator

programming model (e.g. CUDA) and make the source code readable and available

to the programmer. In addition, IPMACC is designed to be extensible and allow

translation of OpenACC to various programming models. We overview frameworks

that are similar to IPMACC in Section 8.

1In this chapter, in interest of space, we limit the discussion to CUDA. Very similar discussion is
also applicable to OpenCL.

17

Generating the low-level source code has two advantages. Firstly, this allows tak-

ing advantage of the latest innovations in the target compilers for executing OpenACC

applications. Secondly, the programmers can have an equivalent version of their serial

code on accelerators by simply augmenting the code with OpenACC notation. Later,

experienced OpenCL or CUDA programmers can perform further optimizations on

top of that, avoiding development from scratch and saving huge amount of devel-

opment effort. To this end, we did our best to minimize abstraction and generate

direct target source code. Currently, IPMACC can translate OpenACC application

to two different backends: OpenCL or CUDA. Both translators and runtime library

of IPMACC are developed flexible enough to allow easy inclusion of more backends

(e.g. ISPC [79]).

Structure. IPMACC framework has a command-line interface for compiling an

OpenACC application and generating the destination binary. Compilation starts with

validating the OpenACC syntax. Then, the OpenACC kernels and data regions are

extracted from the code and these regions are translated to proper target (OpenCL or

CUDA). Then, several static passes parse the code to find dimensions of the parallel

loops, type and size of the data, user-defined types, user-defined procedure calls, etc.

After gathering these information, IPMACC generates the target source code. Finally,

the target source code is passed to the system compiler (g++ if the target is OpenCL

or nvcc if the target is CUDA) to generate the final object code. The command-

line tool accepts all compilation flags that the system compiler understands. Hence,

the command-line tool can be used for generating intermediate object codes or final

binaries.

Features. IPMACC supports most of OpenACC procedure calls and directives.

Currently, all procedure calls except synchronizations are supported. IPMACC sup-

ports kernels, loop, data, enter, exit, and cache directives. parallel, device selection,

and synchronization clauses are yet to be implemented. IPMACC supports the use of

user-defined types and user-defined procedure calls in the kernels region. Nested loops

are supported and parallel iterations of each loop nest is mapped to a unique dimen-

sion of the CUDA thread block (or OpenCL work-group). IPMACC is an open-source

framework and the code is available on github [37].

3.2 Methodology

Benchmarks. We use benchmarks from NVIDIDA GPU Computing SDK [67] and

18

Rodinia Benchmark Suite [13]. NVIDIA GPU Computing SDK includes a large set

of CUDA and OpenCL test cases, each implementing a massively-parallel body of an

application in CUDA and OpenCL efficiently. Most test cases also include a serial

C/C++ implementation. We developed the OpenACC version of these benchmarks

over the serial C/C++ code. Rodinia is a GPGPU benchmark suite composed of a

wide set of workloads implemented in C/C++. Originally, each of these benchmarks

were implemented in CUDA and OpenCL parallel models. Recently, a third-party

[78] added the OpenACC implementation of the benchmarks. We include N-Body

simulation from the SDK and the remaining benchmarks from Rodinia.

OpenACC Compilers. We use our in-house framework, IPMACC, for compiling

OpenACC applications. The framework and benchmarking suite can be obtained from

github [37]. We validated the correctness of our framework by comparing the results of

OpenACC benchmarks against the serial version. For the last part of evaluations, we

compare performance of IPMACC to Omni OpenACC compiler [90]. Omni compiler

executes OpenACC applications over CUDA runtime.

Performance evaluations. We compile the OpenACC version of the bench-

marks by our framework and run it over CUDA runtime. We compare these to

CUDA implementations available in NVIDIA GPU Computing SDK and Rodinia.

In order to evaluate performance, we report the kernel execution, kernel launch, and

memory transfer times. We use nvprof for measuring these times in CUDA [14]. For

kernel execution and memory transfers time, we report the time that nvprof reports

after kernels/transfers completion. For kernel launch time, we report the time mea-

sured by nvprof in calling cudaLaunch, cudaSetupArgument, and cudaConfigureCall

API procedures. Every reported number is the harmonic mean of 30 independent

runs. We use harmonic mean to filter outliers (extremely big values) that appear in

measurements. These big numbers may appear if the system is undesirably busy with

an unexpected system process/task while we are running a sample. For each kernel,

runtime difference among independent runs are very insignificant and we found that

30 samples are large enough to capture the common values.

Platforms. We perform the evaluations under a CUDA-capable accelerator; NVI-

DIA Tesla K20c. This system uses NVIDIA CUDA 6.0 [67] as the CUDA implemen-

tation backend. The other specifications of the system are: CPU: Intelr Xeonr CPU

E5-2620, RAM: 16 GB, and operating system: Scientific Linux release 6.5 (Carbon)

x86 64. We use GNU GCC 4.4.7 for compiling C files.

19

C
U

D
A

O
pe

nA
C

C

C
U

D
A

O
pe

nA
C

C

C
U

D
A

O
pe

nA
C

C

C
U

D
A

O
pe

nA
C

C

C
U

D
A

O
pe

nA
C

C

C
U

D
A

O
pe

nA
C

C

C
U

D
A

O
pe

nA
C

C

C
U

D
A

O
pe

nA
C

C

C
U

D
A

O
pe

nA
C

C

C
U

D
A

O
pe

nA
C

C

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

Memory transfer Kernel execution Launch overhead

Backprop

BFS

dyadic.

Hotspot

Matrix Mul.

N-Body

Nearest.

Needle.

Pathfinder

SRAD

Figure 3.1: Comparing the execution time of OpenACC to highly-optimized CUDA
implementations. Each bar shows the duration of time that the application spends
on memory transfer, kernel execution, and kernel launch overhead.

3.3 Experimental Results

In this section, we evaluate performance of IPMACC under various aspects. Firstly,

we compare a set of OpenACC applications to their highly optimized CUDA version.

Our goal is to identify OpenACC’s programming limitations resulting in the perfor-

mance gap between OpenACC and CUDA. We show that CUDA optimizations in

using software-managed cache is the main reason causing a huge gap between CUDA

and OpenACC. Secondly, we compare the execution time of various OpenACC op-

erations under OpenCL and CUDA backends of IPMACC. Specifically, we report

the timing overhead of copyin, copyout, and reduction operations. Finally, we com-

pare performance of IPMACC to a previous open-source compiler, Omni OpenACC

compiler.

3.3.1 Standard Benchmarks

Figure 3.1 reports the execution time for OpenACC applications, compared to their

CUDA version. The figure reports the breakdown of time spent on the accelerator;

kernel launch (launch), kernel execution (kernel), or memory transfer between host

and accelerator (memory). Kernel launch time includes the time spent on setting

kernel arguments and launching the kernel on the accelerator.

20

In most cases, CUDA’s kernel launch/execution portion is shorter than OpenACC.

Also, memory transfer times are comparable on both CUDA and OpenACC. There

are exceptions where OpenACC memory transfers are faster (e.g. Backprop) or kernel

time of CUDA and OpenACC are equal (e.g. Nearest.). We investigate the differences

between CUDA and OpenACC in the following sections.

Below we discuss applications separately providing insight into why CUDA and

OpenACC implementations presented in Figure 3.1 have different kernel launch, ker-

nel execution, and memory transfer times.

Back Propagation. Back Propagation (Backprop) is a machine-learning algo-

rithm used to train the weights in a three-layer neural network. In both OpenACC

and CUDA versions, there are six back-to-back serial operations where the output of

each stage is fed to the immediate next stage as input. Each stage can be performed

in parallel on the accelerator. OpenACC and CUDA versions offload the first and

last stages to GPU.

OpenACC implementation performs faster memory transfers and slower kernel

launch/execution, compared to CUDA. This is explained by the difference between

CUDA and OpenACC in implementing the first stage, which is similar to reduction.

OpenACC launches multiple kernels to reduce all variables on the accelerator. CUDA,

however, performs a two-level reduction; first level on the GPU and the second level

on the CPU. This explains why CUDA has lower kernel execution/launch and higher

memory transfer time.

BFS. BFS visits all the nodes in the graph and computes the visiting cost of each

node. Each node is visited only once. Parallel threads of a kernel visit the nodes

belonging to the same graph depth concurrently and the algorithm traverses through

the depth iteratively. The operation stops once there is no child to visit.

Compared to the CUDA version, the OpenACC version of BFS spends less time

on memory transfers. This can be explained by the fact that the OpenACC version

performs data initializations on the GPU. However, the CUDA version initializes the

inputs on the host and transfers the inputs to GPU. Compared to the CUDA version,

OpenACC spends more time on kernel execution, since it forces a debilitating reduc-

tion on a global variable. The global variable is a boolean indicating whether there

remained more nodes to visit or not. CUDA avoids global reduction by initializing

the variable to FALSE on the host and imposing a control-flow divergent in the kernel

to guard the global variable from FALSE writes (allowing TRUE writes only).

Dyadic Convolution. Dyadic Convolution (dyadic.) is an algebra operation

21

calculating the XOR-convolution of two sequences. The OpenACC implementation

parallelizes output calculations, where each thread calculates one output element.

Although this implementation is fast to develop, it exhibits a high number of irregular

memory accesses. To mitigate irregular memory accesses, the CUDA version uses Fast

Walsch-Hadamard Transformation (FWHT) for implementing dyadic convolution (as

described in [5]).

As reported in Figure 1, both OpenACC and CUDA versions spend almost the

same amount of time on memory transfers. While the CUDA version launches several

kernels, OpenACC launches only one kernel. This explains why the CUDA version

imposes higher kernel launch overhead. In CUDA the kernels’ execution time is 82%

faster than OpenACC. This is due to the fact that the CUDA version uses FWHT

to mitigate irregular memory accesses. Although OpenACC can implement dyadic

convolution using FWHT, the same FWHT algorithm used in CUDA cannot be im-

plemented in OpenACC. CUDA FWHT uses shared memory to share intermediate

writes locally between neighbor threads, which is not possible under OpenACC stan-

dard.

Hotspot. Hotspot simulates chip characteristics to model the temperature of

individual units. At every iteration, the algorithm reads the temperature and power

consumption of each unit and calculates new temperatures. Although both OpenACC

and CUDA spend the same amount of time on memory transfers, CUDA kernel is

faster.

In Hotspot, the temperature of each unit depends on its power consumption and

neighbors’ temperatures. CUDA kernel exploits this behavior to localize the com-

munication and reduce global memory accesses as follows. In CUDA, threads of the

same thread block calculate the temperature of neighbor units. The CUDA version

locally updates the new temperature of neighbor units using the threads of the same

thread block. This local communication reduces the number of kernel launches used

to synchronize the temperature across all thread blocks, explaining why the CUDA

version performs faster kernel launches and comes with shorter execution time. In

OpenACC, unlike CUDA, the software-managed cache cannot be exploited for local

communication. Hence, in OpenACC there are higher number of global synchroniza-

tions and kernel launches, which in turn harm performance.

Matrix Multiplication. Matrix Multiplication (Matrix Mul.) performs multi-

plication of two 1024 by 1024 matrices. Both CUDA and OpenACC implementations

use output parallelization, calculating each element of the output matrix in parallel.

22

CUDA version is different from OpenACC as it processes input matrices tile-by-tile.

By processing in tiles, CUDA version fetches the input tiles in few well-coalesced

accesses into software-managed cache and shares the tiles among the threads of the

same thread block.

While kernel launch and memory transfer times are nearly the same across CUDA

and OpenACC, CUDA kernel time is much lower than OpenACC. CUDA version

takes advantage of software-managed cache in two ways. First, CUDA version merges

the required data of the thread block and fetches them once, minimizing redundant

memory accesses across thread of the same thread block. Second, software-managed

cache removes cache conflict misses, since the replacement policy is controlled by the

programmer. Under OpenACC, although the threads have very high spatial locality,

parsing the matrix row-by-row at a time highly pollutes the cache, returning high

number of conflict misses. Also having multiple thread blocks per SM exacerbates

this effect.

N-Body simulation. N-Body models a system of particles under the influence

of gravity force. In each timestep, operations of O(N2) complexity are performed (for

a system of N particles) to calculate forces between all pairs of particles. Inherently,

there are many redundant memory reads, since the mass and position information of

each particle is fetched by other particles N-1 times to calculate its interaction with

other particles.

While both CUDA and OpenACC memory transfers take about the same time,

CUDA kernels are much faster. The CUDA version tiles the computations to reduce

redundant memory reads [73]. CUDA exploits shared memory to share the particles

among all threads of a thread block. In OpenACC, however, the redundant memory

accesses are not filtered out by the software-managed cache. As reported, redundant

memory accesses can degrade performance significantly.

Nearest Neighbor. Nearest Neighbor (Nearest.) finds the five closest points to

a target position. The Euclidean distance between the target position and each of

the points is calculated and the top five points with the lowest distance are returned.

OpenACC and CUDA versions both calculate Euclidean distances for each point

in parallel. OpenACC and CUDA versions spend about the same time on kernel

launch, kernel execution, and memory transfer. This is explained by the similarity of

parallelization methods applied in both OpenACC and CUDA.

Needleman-Wunsch. Needleman-Wunsch (Needle.) is a sequence alignment

algorithm used in bioinformatics. In either CUDA or OpenACC, traverses a 2D

23

matrix and updates the costs. Upon updating a new cost, four memory locations are

read and one location is written.

Although both CUDA and OpenACC versions spend the same amount of time on

memory transfers, CUDA kernel launch/executions are much faster than OpenACC

kernels. The CUDA version fetches a data chunk of costs matrix into shared memory

and traverses the matrix at the shared memory bandwidth. This mechanism comes

with three advantages: i) filtering redundant global memory accesses by shared mem-

ory, ii) minimizing global communication by sharing intermediate results stored in

the shared memory, iii) reducing the number of kernel launches and global communi-

cations. The fewer number of kernel launches explains why the launch time of CUDA

is much less than OpenACC.

Pathfinder. In Pathfinder (Pathfin.) kernel, every working element iteratively

finds the minimum of three consequent elements in an array. The CUDA version of

Pathfinder performs two optimizations: i) finding the minimum by accessing the data

from shared memory, and ii) sharing the updated minimum locally among neighbor

threads for certain iterations and then reflecting the changes globally to other threads.

Such local communications reduce the number of global synchronizations and kernel

launches.

However, OpenACC’s API is not flexible enough to allow the programmer exploit

the shared memory in a similar way. Therefore neighbor threads in the OpenACC

version do not communicate via shared memory. Therefore, each thread fetches the

same data multiple times and threads communicate only through global memory.

Communication through global memory is implemented through consequent kernel

launches. This explains why OpenACC imposes higher kernel launch overhead.

Speckle reducing anisotropic diffusion. Speckle reducing anisotropic diffu-

sion (SRAD) is an image processing benchmark performing noise reduction through

partial differential equations iteratively. Compared to CUDA, the kernel time of

OpenACC version is lower. Three code blocks construct the computation iterative

body of this benchmark: one reduction region and two data parallel computations.

Our evaluation shows OpenACC version performs 5% slower than CUDA, upon ex-

ecuting two data parallel computations. However, OpenACC outperforms CUDA

in executing the reduction portion. This is explained by the difference in reduction

implementations. Our OpenACC framework performs the reduction in two levels:

reducing along threads of thread block on GPU and reducing along thread block on

CPU. In the CUDA version, however, reduction is performed by multiple serial kernel

24

52KB
0.2MB

0.5MB
1.5MB

4MB
12MB

0

1,000

2,000

3,000

Size

La
te

nc
y

(m
s)

OpenCL

CUDA

(a) copyin

52KB
0.2MB

0.5MB
1.5MB

4MB
12MB

0

1,000

2,000

3,000

Size

La
te

nc
y

(m
s)

OpenCL

CUDA

(b) copyout

7K 20K 59K
177K

531K
1.6M

0

200

400

600

Number of values to reduce

La
te

nc
y

(m
s)

OpenCL

CUDA

(c) reduction max

7K 20K 59K
177K

531K
1.6M

0

200

400

600

Number of values to reduce

La
te

nc
y

(m
s)

OpenCL

CUDA

(d) reduction (+)

1 2 4 8 16
0

10

20

30

40

Number of args

La
te

nc
y

(m
s)

OpenCL

CUDA

(e) Kernel launch

Figure 3.2: Comparing the latency of CUDA and OpenCL backends for IPMACC
under various OpenACC operations: (a) copyin, (b) copyout, (c) reduction (max),
(d) reduction (+), (e) kernel launch.

launches, all on the GPU. The OpenACC version spends less time on executing the

kernel as part of the computation is carried on host. Meanwhile, performing two

levels of reduction imposes the overhead of copying intermediate data from GPU to

CPU. This explains why the OpenACC version spends slightly more time on memory

transfers and less time on kernel launch/execution.

3.3.2 OpenACC Benchmarking

Figure 3.2 compares performance of IPMACC backends (OpenCL and CUDA) un-

der various OpenACC operations. These operations include copying data from host

to accelerator (copyin), copying data from accelerator to host (copyout), reducing

writes from parallel threads by maximum (reduction (max)) and sum (reduction (+))

operators, and kernel launch overhead. To perform this experiment, we measure the

time for completing one of these operations (e.g. data directive with copyin clause

or kernels loop directive with reduction clause). The directive is called within a se-

quential loop which iterates for 30 times. We report the harmonic mean of these 30

iterations. The OpenACC benchmarking suite that we use here is included in the

25

IPMACC package [37].

copyin and copyout. OpenCL and CUDA backend perform similar under copyin

clause. For copyout clause, OpenCL performs slightly faster under larger data sizes.

reduction (max) and reduction (+). IPMACC implements a two-level reduc-

tion algorithm; first, reducing the values within the thread block on the accelerator,

then, reducing the results of all thread blocks on the host [26]. Under both OpenCL

and CUDA, reduction time starts to grow remarkably after 59K values. Reduction

(max) performs slower than reduction (+) under both OpenCL and CUDA, since

finding the maximum causes branch divergence. Comparing OpenCL and CUDA

backends, CUDA backend performs slightly faster under both types of reduction.

kernel launch. We measure the time taking to launch and execute a kernel

with different number of arguments; ranging from one to 16 arguments. To make

sure that the compiler is not optimizing the code by removing the kernel arguments,

within the kernels region we sum the value of all arguments and write the result

back to global memory. Under both OpenCL and CUDA, increasing the number of

arguments increases the measured latency. Part of this increase comes from the launch

and portion of the increase comes from the increase in the number of sum operations in

the kernel. It is not possible to separate these two by OpenACC control. Comparing

OpenCL and CUDA, OpenCL kernels perform 4% to 8% slower than CUDA.

3.3.3 Compiler Performance

In this Section, we compare our framework work to Omni OpenACC compiler [90]. We

compare the performance of the code generated by Omni and IPMACC under three

basic workloads; matrix-matrix multiplication, vector-vector add, and reduction. Our

goal is to compare loop-to-thread mapping, overhead of generated code, and efficiency

of reduction. Since Omni is only able to run the application over CUDA, here we

limit the comparison to CUDA back end of IPMACC.

Matrix-matrix Multiplication. This benchmark consists of three nested loops.

The most inner loop is a reduction. Two outer loops can be executed independently in

parallel. In this comparison, we parallelize the two outer loops. Figure 3.3 compares

the performance of this implementation compiled by IPMACC or Omni. As reported,

under small problem size, IPMACC performs faster and under larger problem sizes,

Omni performs faster. We explain this by the mapping of the two nested loops to

CUDA threads and thread blocks. IPMACC maps each loop nest along one dimension

26

IP
M

A
C

C

O
m

ni

IP
M

A
C

C

O
m

ni

IP
M

A
C

C

O
m

ni

0

0.25

0.50

0.75

1.00

1.25

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

Memory transfer Kernel execution

16x16 256x256 1024x1024

Figure 3.3: Comparing the performance of IPMACC and Omni under matrix-matrix
multiplication workload. Each bar shows the duration of time that the application
spends on memory transfer and kernel execution. Each bar group reports for partic-
ular problem size.

of the grid. This means IPMACC launches as parallel threads as the number of

parallel loop iterations. Omni, however, maps all loops to one single-dimensional

grid. Omni maps the first loop across the thread blocks and the second loop across

the threads of the thread blocks. Since the number of threads per thread block is

limited by an small number (e.g. 1024), Omni also limits the number of parallel

threads which are launched for executing the second loop. Accordingly, more than

one loop iteration (or task) is mapped to each thread. Below we discuss when it is

advantageous and when it is not.

Omni’s mapping reduces the number of threads and thread blocks. This is advan-

tageous over IPMACC’s mapping when there are large number of parallel iterations,

as we see under 256 x 256 and 1024 x 1024 problem sizes in Figure 3.3. This is

because Omni’s mapping reduces the overhead of scheduling large number of threads

and thread blocks. On the other hand, assigning more than one task to threads and

thread blocks comes with an overhead. This overhead includes control statements

for the two loops, assigning more than one job (or one loop iteration) to threads and

thread blocks. As we see under 16 x 16 problem size in Figure 3.3, this overhead

causes Omni to stay behind IPMACC.

We also found that for different problem sizes, Omni always generates a loop to

assign more than one job to each thread block. In our experiments, however, this loop

only assigns one job to each thread. Hence, the generation of this loop essentially

imposes a control flow overhead and reduces the performance. To clarify and show

this overhead, we change the matrix-matrix multiplication implementation and merge

27

IP
M

A
C

C

O
m

ni

IP
M

A
C

C

O
m

ni

IP
M

A
C

C

O
m

ni

0

0.25

0.50

0.75

1.00

1.25

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

Memory transfer Kernel execution

16x16 256x256 1024x1024

Figure 3.4: Comparing the performance of IPMACC and Omni under a matrix-matrix
multiplication where two outer loops are merged and flattened. Each bar shows the
duration of time that the application spends on memory transfer and kernel execution.
Each bar group reports for particular problem size.

IP
M

A
C

C

O
m

ni

IP
M

A
C

C

O
m

ni

IP
M

A
C

C

O
m

ni
0

0.25

0.50

0.75

1.00

1.25

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

Memory transfer Kernel execution

1K 16K 64K

Figure 3.5: Comparing the performance of IPMACC and Omni under vector-vector
addition. Each bar shows the duration of time that the application spends on memory
transfer and kernel execution. Each bar group reports for particular problem size.

and flatten the two outer loops into single unified loop. Figure 3.4 reports the numbers

under the latter implementation. In this case, both compilers generate a code with

the same mapping of loops to threads. The difference is an extra loop that Omni

generates to assign more than one task to each thread (while always assigning one

task to each thread). As reported, in this implementation, IPMACC performs faster

than Omni.

Vector-vector Addition. This benchmark adds two input arrays, element by el-

ement, and stores the output in another array. Each individual sum can be performed

in parallel. Figure 3.5 compares the performance of vector add under IPMACC and

Omni. As reported, IPMACC performs faster than Omni. We explain this by the

28

IP
M

A
C

C

O
m

ni

IP
M

A
C

C

O
m

ni

IP
M

A
C

C

O
m

ni

IP
M

A
C

C

O
m

ni

0
0.25
0.50
0.75
1.00
1.25
1.50

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

8M 32M 64M 128M

Figure 3.6: Comparing the performance of IPMACC and Omni under reduction
clause. Each bar shows the duration of time that the application spends to com-
plete whole reduction. Each bar group reports for particular problem size.

code generated by the two compilers. IPMACC generates a control statement to

control number of active threads. Omni, however, generates a loop to control the

number of loop iterations assigned to each thread (assigning more than one task to

each thread). The generation of this loop is an extra computation on GPU since the

runtime profiling indicates Omni launches enough number of threads and assigns one

task to each thread.

Reduction. Figure 3.6 compares the performance OpenACC reduction clause

under IPMACC and Omni. Since our implementation reduces the results of thread

blocks on the host, we measure the time taking to complete the whole kernels region

(before kernels region starts and after it completes). As reported, Omni implementa-

tion of reduction is much faster than IPMACC.

29

Chapter 4

Micro-benchmarking

In this chapter, we present several micro-benchmarks to improve the understanding

of memory hierarchy of the GPUs. Specifically, we microbenchmark global memory

and software-managed cache. Our goal is to use the findings here in IPMACC for

efficient translation of OpenACC to CUDA.

4.1 Outstanding Memory Request Handling Re-

sources

In this section we use micro-benchmarks to analyze GPGPU capabilities in manag-

ing outstanding memory requests. Firstly, we give an overview of two alternative

architectural designs for handling outstanding memory requests in GPGPUs (Sec-

tion 4.1.1). One design is based on the Miss Status/Information Holding Register

(MSHR) structure, initially proposed for CPUs [34]. The other design, named Pend-

ing Request Table (PRT) is used specifically by many-thread GPUs [74]. Secondly,

we propose a micro-benchmark to understand the structure of outstanding memory

request handling resources in real GPUs (Section 4.1.2). Finally, we evaluate our

micro-benchmark on two real GPUs to understand the design details (Section 4.1.4).

4.1.1 Known Architecture

In this study we focus on NVIDIA Tesla M2070 and Tesla K20 GPGPUs. Tesla M2070

and Tesla K20 are based on Fermi [99] and Kepler architectures [71], respectively.

Kepler, the recent architecture, differs from Fermi in various aspects; namely the

30

number of Streaming Multiprocessors (SM)1, warps per SM, and SIMD engines per

SM. In both architectures, there are 32 threads in a warp. Threads of the warp

execute one common instruction at a time, referred to as warp instruction. Threads

of the warp are executed in lock-step SIMD-like style and are synchronized at every

instruction.

Both architectures have two levels of cache hierarchy for data. We assume that the

cache hierarchy is not blocking and can handle multiple outstanding memory requests

concurrently. This is achieved mainly by using outstanding memory request handling

resources. Since the L2 cache is backing multiple L1 caches from different SMs, we

find it reasonable to assume that the L2 cache is richer than the L1 in terms of

outstanding memory request handling resources. Hence, during micro-benchmarking

a single SM, the outstanding memory request handling resources at the L1 cache side

will be the bottleneck as these resources saturate before the saturation of outstanding

memory request handling resources at the L2 cache side.

We assume two possible designs for the organization of outstanding memory re-

quest handling resources at the SM or L1 cache side. Below we overview these two

designs.

Miss Status Handling Registers

The Miss Status/Information Holding Registers (MSHR) structure is assumed in

GPGPU-sim v3.2.2 [7] for modeling outstanding memory request handling resources.

In this design, each SM has a certain number of MSHRs. Each MSHR tracks one

pending memory request, fetching a memory block equal to the cache line size.

Upon executing a memory instruction for a warp, the Load/Store unit coalesces

memory accesses of the threads into memory blocks. For each coalesced access, one

MSHR entry is booked and one memory request is issued. Each MSHR entry can

also be shared among a certain number of threads, avoiding redundant MSHR alloca-

tions for the same address. The number of threads/warps that can share a common

MSHR varies from GPU to GPU, impacting the capability of a GPU in dealing with

outstanding memory requests. Also the address offset (within the requested memory

block) is stored for each of the threads merged in the same MSHR entry.

Once a reply is received from the lower memory level (L2 cache in this case), the

requested data and identifier of MSHR are extracted from the reply. For the thread

1SM is a GPU core in NVIDIA terminology.

31

identifiers marked in the corresponding MSHR entry, the Load/Store unit writes the

fetched data into the private registers of the threads. The Load/Store unit releases

the MSHR entry after completing this process. An operation example is illustrated

in [36].

In this design, the number of outstanding memory requests depends on the number

of available MSHRs. Accordingly, the SM may stall a warp once there is no free MSHR

available. Since each MSHR has limited capability in merging redundant memory

requests, it is important that the programmer develops programs that perform well-

coalesced accesses to avoid such stalls.

Pending Request Table

The Pending Request Table (PRT) structure is introduced in [74]. PRT has a certain

number of entries and each entry tracks one memory instruction per warp (memory

instructions include load and store instructions from DRAM.)

Upon executing a memory instruction for a warp, only one PRT entry is reserved

(if there is a cache miss). Before booking information in this entry, the Load/Store

unit coalesces memory accesses of the threads into memory blocks. For each coalesced

access, the Load/Store unit creates one memory request to fetch the data from the

lower memory level. In the memory request packet, the Load/Store unit stores the

address of the requested block, the identifier of assigned PRT entry, and the mask of

threads needing this block. Then, the Load/Store unit sends this memory request to

the lower memory level. In the PRT entry, the Load/Store unit stores the number

of pending memory requests. It also stores the memory address offset (within the

requested memory block) for each thread.

Once a reply is received from the lower memory level, the requested data, the iden-

tifier of PRT entry, the address of requested memory block, and the mask of threads

are extracted from the reply. Based on the offsets recorded in the corresponding PRT

entry, the Load/Store unit serves the memory instruction and stores the fetched data

into private registers of the threads marked in the mask. The PRT entry is released

upon completion of all memory requests. An example is illustrated in [74].

The number of outstanding memory requests is independent of the number of

uncoalesced memory accesses. Since the entire memory accesses of a warp (including

coalesced and uncoalesced accesses) are stored in just one PRT entry, the number of

outstanding memory instructions is limited by the number of load/store instructions

32

executed by warps. Essentially, the number of PRT entries specifies the number of

warp memory instructions that can be executed concurrently.

4.1.2 Micro-benchmarking Mechanism

We developed a set of micro-benchmarks to measure the maximum number of out-

standing memory requests that every SM can handle. We report the information

gathered by our micro-benchmark in the form of Thread-Latency plots. Thread-

Latency plots report the latency of completing certain number of memory requests.

Calculating the variance of latencies in this plot, we detect occasional saturations in

outstanding memory request handling resources. Saturation in outstanding memory

request handling resources appears as a spike in the variance curve and indicates the

maximum number of outstanding memory requests that an SM can handle. We eval-

uate various memory access patterns to estimate the capability of an SM in handling

pending memory requests. Below we explain our micro-benchmark, Thread-Latency

plot, how we derive information from this plot, and how L2 cache might impact our

micro-benchmarking. We also list the memory patterns that we use.

Micro-benchmark Skeleton

For generating Thread-Latency plots, we use the source CUDA code skeleton shown

in Listing 4.1. The code measures the latency associated with completing a certain

number of global memory requests. Within the kernel, we use clock() procedure call

to measure the latency. The code varies two parameters to control the number of

memory requests: i) the number of threads and ii) the number of loads per thread.

These two parameters are controlled by nThreads and N in the code, respectively. We

sweep nThreads from 2 to 1024 (maximum thread block size), incrementing steps of 2

threads at a time. We report a separate Thread-Latency plot for each N, swept from

1 to 4. We limit the number of loads per thread below the scoreboard limit. We avoid

the configurations that exceed the capability of scoreboard since the performance in

these cases is limited by the scoreboard, not the outstanding memory request handling

resources [60].

During evaluations, the code launches exactly one thread block (line 21), assuring

all threads only stress memory handling resources of a single SM. Within the kernel

in the code lines 7 to 14, we measure the latency of completing N memory requests.

The addresses of these memory requests are calculated in the lines between 3 to

33

Listing 4.1: micro-benchmarking code.

1 void global
2 kernel(int ∗in, int ∗out, unsigned long int ∗time) {
3 unsigned long int addr1=(unsigned long int)in+UNQ(1,gtid);
4 ...
5 unsigned long int addrN=(unsigned long int)in+UNQ(N,gtid);
6

7 syncthreads() ;
8 t1=clock();
9 int reg1, ..., regN;

10 asm(”ld.global.s32 %0, [%1+0];” : ”=r”(reg1) : ”l”(addr1));
11 ...
12 asm(”ld.global.s32 %0, [%1+0];” : ”=r”(regN) : ”l”(addrN));
13 syncthreads() ;
14 t2=clock();
15

16 out[gtid]=reg1+...+regN;
17 time[gtid]=t2−t1;
18 }
19 int main()
20 {
21 kernel<<<1, nThreads>>>(in, out, time);
22 }

5. We change the address calculation to simulate different memory patterns. In

this example, address calculation assures every memory address points to a unique

128-byte region (indicated by UNQ macro). We separate unique addresses by 128

bytes since the cache line size of micro-benchmarked GPUs are 128 bytes [94]. This

addressing pattern forces the GPU to issue a unique memory request for each of the

addresses. After measuring the time, the time is written back to global memory at

line 17. The code writebacks the accumulation of loaded values at line 16, imposing

instruction dependencies to prevent compiler optimizations from removing memory

instructions. The micro-benchmarking code can be obtained from [38].

Methodology of Deducing Information from Thread-Latency Plot

We present the Thread-Latency plot for reporting the latency measured by Listing 4.1.

We derive information from this plot and estimate the maximum number of pending

memory requests. Each Thread-Latency plot reports the latency under certain fixed

34

i) memory pattern and ii) number of loads per threads. The horizontal axis of this

plot represents different number of threads (increasing the number of threads means

increasing the number of memory instructions). Two vertical axises report the latency

and variance of latency. We report unbiased sample variance of latency to make

latency variations clearly visible. For every point in Thread-Latency plot, the variance

curve reports the variance among the point and the two neighbors (right and left).

For every point, the variance is calculated using the following equation:

V ar(Latthd) =

thd+1∑
i=thd−1

(Lati − µ)2

2
,µ =

thd+1∑
i=thd−1

Lati

3

Along the positive direction of the horizontal axis, where memory requests in-

crease, the variance curve highlights sudden changes in the latency curve, indicating

the saturation of memory handling resources in the hardware.

Figure 4.1 shows the Thread-Latency plot for one load per thread, under the

memory pattern where each thread sends a unique memory request. In each Thread-

Latency plot, two factors can explain the spikes in the variance curve. First, rapid

change of latency is caused by serialization in coalescing memory accesses of threads,

issuing non-coalesced memory requests, and writing the data back after completion

of memory requests. Second, latency variation is caused by the saturation of pending

memory requests resources. The second latency variation is larger. Also we observe

serialization latency rapid variations appear before the saturation of pending requests

resources.

Memory issue and writeback serialization. In Thread-Latency plot, a con-

sistent increase can be seen in the latency when increasing the number of threads

from 1 to 32, . This can be explained by the serialization in i) coalescing and issuing

memory requests and/or ii) writing the fetched data back to register file for each

thread of the warp. We refer to these two serializations as memory issue serialization

and writeback serialization, respectively. As the number of threads strides beyond

one warp (higher than 33), the latency does not change significantly. We can infer

that memory issue and writeback of different warps can be processed in parallel (this

can be achieved by parallel load/store units in an SM). We conclude from Figure 4.1

that up to 96 memory requests can be processed in parallel, as an increase in the

latency is observed just after 96 threads.

Pending memory requests. Upon saturation of pending memory request re-

35

1 16 32 48 64 80 96 112 128 144
0

2

4

·104

Number of threads

Va
ria

nc
e

of
La

te
nc

y
Variance

1 16 32 48 64 80 96 112 128 144

500

1000

1500

Number of threads

La
te

nc
y

(c
lo

ck
tic

ks
)

Latency

Figure 4.1: Thread-Latency plot under one load per thread and every thread requests
one unique 128-byte block.

sources, the memory unit stops issuing further requests and waits for completion of

prior memory requests. This can cause a significant spike in the variation curve of

Thread-Latency plot. For instance in Figure 4.1 and under one load per thread plot,

we can see a significant change in the latency after 128 threads (which equals to 128

memory requests in this plot).

As reported in the variance plot of Figure 4.1, moving from left to right, the first

and smaller spike corresponds to memory issue and writeback serialization and the

second and larger spike corresponds to the saturation in pending memory requests

resources. The second spike can be seen clearly on 128 for one load per thread in

Figure 4.1. We conclude from this figure that the maximum number of outstanding

memory requests possible to accommodate is 128.

L2 Cache

In NVIDIA Fermi and Kepler GPUs all memory transfers from host to device pass

through the L2 cache. This means that once memory transfers are completed, kernels

may access the data at the latency of L2 cache (not DRAM). As we rely on studying

variations in memory latency, understanding the L2 cache is critical.

To understand the L2 cache, we wrote a kernel which simply copies a chunk of

data from one part of the global memory to another. Each thread is responsible

for copying a single 8-byte data element. Accordingly, threads fetch the data into

the GPU cores and then write it back to another address. We measure the time of

completing the kernel under different data sizes. We expected to see L2 cache hits so

long the overall data size stays below the L2 cache capacity. In Figure 4.2, the plots

labelled as M2070 and K20 show the result of this micro-benchmarking under Tesla

M2070 (Fermi) and K20 (Kepler), respectively. To signify the performance impact

36

128KB
256KB

384KB
512KB

640KB
768KB

896KB
1024KB

1152KB
1280KB

1408KB
1536KB

1664KB
1792KB

1920KB
2048KB0

5

10

15

20

Input and Output size

La
te

nc
y

(u
s)

K20 K20-flushed
M2070 M2070-flushed

Figure 4.2: Micro-benchmarking L2 cache under Tesla M2070 and K20. Comparing
flushed to non-flushed plots clearly shows the saturation of L2 cache after certain
data size.

of using the L2 cache, we compare this latency to cases where L2 cache is flushed.

We flush the L2 cache by copying a large dummy data (76 MB) from host to device

before kernel launch. This essentially clears the L2 cache before the kernel launch that

follows. In Figure 4.2, the plots labelled M2070-flushed and K20-flushed represent

this. Comparing the flushed and non-flushed plots, we conclude that the performance

gap saturates beyond a certain data size. This suggests the saturation of L2 cache

after that point. Under M2070 and K20, this occurs nearly at 768 KB and 1536 KB,

which are the L2 cache sizes for these GPUs.

We use our findings and make sure that the input data size is below L2 cache

size. Consequently the spikes observed our a result of the saturation of outstanding

memory accessing resources and not the L2 cache.

Memory Patterns

To understand the parameters of MSHR and PRT tables, we issue memory requests

with different patterns. We use the following memory patterns:

• All-unique: every individual thread of the warp sends a load request for a

unique address (total of 32 unique requests per warp),

• Two-coalesced: every two neighbor threads of the warp send a load request

for the same address (total of 16 unique requests per warp),

• Four-coalesced: every four neighbor threads of the warp send a load request

for the same address (total of eight unique requests per warp),

• Eight-coalesced: every eight neighbor threads of the warp send a load request

for the same address (total of four unique requests per warp),

37

• 16-coalesced: every 16 neighbor threads of the warp send a load request for

the same address (total of two unique requests per warp),

• 32-coalesced: every 32 threads of the warp send a load request for the same

address (total of one unique request per warp),

These patterns can be implemented in Listing 4.1 simply by modifying the UNQ

procedure.

4.1.3 Experiment Methodology

We run our evaluations on two systems with different GPGPUs; NVIDIA Tesla M2070

and NVIDIA Tesla K20. We measure the time using clock() procedure call of CUDA.

Every reported point is a harmonic mean of three different runs. We use CUDA

Toolkit 5.5 for compiling the benchmarks.

Our micro-benchmarking shows that every warp can issue a limited number of

independent instructions concurrently. This limitation is imposed by the scoreboard

structure used in each SM [60]. In the evaluated micro-benchmark, we found that

Tesla M2070 can issue up to four concurrent instructions per warp. We also found

that Tesla K20 can issue up to three concurrent instructions per warp.

4.1.4 Results

In this section, we use the micro-benchmark presented in Section 4.1.2 to estimate

the capability of an SM in managing pending memory requests. We reconfigure

and run the code under various configurations; varying memory patterns, number of

threads, and number of load instructions per thread. In this section, we follow a two-

step approach to understand outstanding memory request handling resources of Tesla

M2070 and Tesla K20. At the first step, we specify whether the micro-architecture

follows an MSHR-like design (refer to Section 4.1.1) or a PRT-like design (refer to

Section 4.1.1). The micro-architecture may have a design similar to MSHR table, if

the spikes in Thread-Latency plot of GPU depend on the i) number of concurrent

threads and ii) number of loads per thread. The micro-architecture may have a design

similar to PRT, if the spikes in Thread-Latency plot of GPU depend on the number of

warp instructions. In either case, at the second step, we tune the micro-benchmarks to

measure design specifics. For MSHR, we look for the number of MSHRs and mergers

fields per MSHR entry. For PRT, we look for the number of PRT entries per SM.

38

32 48 64 80 96 112 128 144
0

2

4

·104

Number of threads

Va
ria

nc
e

of
La

te
nc

y
Variance

32 48 64 80 96 112 128 144

500

1000

1500

Number of threads

La
te

nc
y

(c
lo

ck
tic

ks
)

Latency

Figure 4.3: Thread-Latency plot under Tesla M2070, one load per thread, and All-
unique memory pattern.

Tesla M2070

MSHR or PRT? Figure 4.3 shows a Thread-Latency plot where each thread sends

a load request for one unique 128-byte memory block. As reported, a significant

variation in latency can be observed upon increasing the number of threads from 128

to 130. From this figure, we infer that SM allows up to 128 unique memory requests.

Hence, the outstanding memory handling resources might be an MSHR table with

128 entries or PRT table with four entries (128/warpsize = 4). In Figure 4.4 we

replicate Figure 4.3, but we change the memory pattern to Two-coalesced. If the

structure is PRT we should see the spike at the exact same number of threads as

Figure 4.3. However, the spike is moved to 256 threads, suggesting that there should

be an extra redundant memory access merging capability in outstanding memory

handling resources. Since this capability only exists in MSHR table, the structure

may not be PRT. We can conclude that each SM of Tesla M2070 has a structure

similar to MSHR table for handling outstanding memory requests.

Parameters of MSHR. Knowing each SM exploits an MSHR table, we look

for the number of redundant memory requests that each MSHR entry may carry

or merge. Based on our earlier micro-benchmarking, we increase the number of re-

dundant memory requests within the warp to measure the merging capability. We

evaluate Two-, Four-, Eight-, 16-, and 32-coalesced memory patterns.

Figure 4.4 shows Thread-Latency plot under Two-coalesced memory pattern where

each thread executes one load instruction. As shown in the figure, there is a huge

spike upon moving beyond 256 threads, which equals to 128 unique memory requests.

Hence, we can infer that SM allows up to 128 unique memory requests and can also

merge up to 128 redundant requests. In other words, SM has enough resources to keep

128 pending memory requests and can merge at least one other redundant request

39

160 176 192 208 224 240 256 272 288
0

0.5

1

1.5

·104

Number of threads

Va
ria

nc
e

of
La

te
nc

y
Variance

160 176 192 208 224 240 256 272 288

500

1000

1500

Number of threads

La
te

nc
y

(c
lo

ck
tic

ks
)

Latency

Figure 4.4: Thread-Latency plot under Tesla M2070, one load per thread, and Two-
coalesced memory pattern.

with each of those pending requests.

Figure 4.5 reports Thread-Latency plot under Four-coalesced memory pattern

where each thread executes two load instructions. There is a significant variation in

the latency when increasing the number of threads beyond 256. This point equals to

a total of 512 requests (256 × 2) from 256 threads, which are later merged into 128

unique memory requests (512/4 = 128) according to the memory pattern). We can

infer that each SM can keep up to 128 pending memory requests and can merge four

other requests with each of the pending requests.

Figure 4.6 reports Thread-Latency plot under Eight-coalesced memory patter

where each thread executes four load instructions. There is a significant spike in

variation plot just after 256 threads. This point equals to 1024 requests (256 × 4)

from 256 threads, which are later merged into 128 unique requests (1024/8 = 256)

according to the memory pattern). We can infer that each SM can keep up to 128

pending memory requests and can merge eight other requests with each of the pending

requests.

For 16-coalesced and 32-coalesced, we could not observe a significant spike in

Thread-Latency plots. Our guess is another resource may have been saturated and

the delay acts as a buffer, flattening MSHR saturation spikes.

Finding. According to the observations above, we infer that each SM of Tesla

M2070 has a 128-entry MSHR table to handle outstanding memory requests. We can

also conclude each MSHR entry can merge up to eight requests.

Tesla K20

MSHR or PRT? Figure 4.8 shows Thread-Latency plot under Tesla K20. In this fig-

ure, there are two loads per thread; every thread issues two unique memory requests.

40

160 176 192 208 224 240 256 272 288 304
0

2

4

6

8

·104

Number of threads

Va
ria

nc
e

of
La

te
nc

y
Variance

160 176 192 208 224 240 256 272 288 304

500
1000
1500
2000
2500
3000

Number of threads

La
te

nc
y

(c
lo

ck
tic

ks
)

Latency

Figure 4.5: Thread-Latency plot under Tesla M2070, two loads per thread, and Four-
coalesced memory pattern.

240 256
0

0.5

1

1.5

2
·105

Number of threads

Va
ria

nc
e

of
La

te
nc

y

Variance

240 256

1000

2000

3000

4000

Number of threads

La
te

nc
y

(c
lo

ck
tic

ks
)

Latency

Figure 4.6: Thread-Latency plot under Tesla M2070, four loads per thread, and
Eight-coalesced memory pattern.

As can be seen, there is a spike at 680 threads. Hence, the outstanding memory re-

quest handling resources can be an MSHR table with 2×680 = 1360 entries or a PRT

table with 44 entries (2× 680/warpsize ≈ 44). In Figure 4.9 we replicate Figure 4.8,

but we change the memory pattern to Two-coalesced. If the structure is MSHR we

should see the spike at 1360 threads, twice as it is in Figure 4.8. However, the spike

is at the exact same number of threads as it is in Figure 4.8, suggesting that there

is not an extra redundant memory access merging capability in outstanding memory

handling resources. Therefore, the structure may not be MSHR. We conclude that

this GPU uses a design similar to PRT.

Finding. Figure 4.7, 4.8, and 4.10 show Thread-Latency plot under Tesla K20

GPGPU. All figures report numbers for All-unique memory pattern; every load in-

struction has a unique address. Figures differ in the number of load instructions per

thread. Figure 4.7, 4.8, and 4.10 report numbers under one, two, and three load

instructions per thread. Under one load instruction per thread, we do not observe

a significant spike in Thread-Latency. This can be explained by the fact that out-

standing memory handling resources are not saturated. Under two load instructions

41

per thread, we observe a significant spike just after 680 threads. At this point, we

have launched 22 warps. Assuming two load instructions per warp, we can also say

we issue 44 warp load instructions at this point. Under three load instructions per

thread, we observe a significant spike just after 454 threads. At this point, we have

launched 15 warps. Assuming three load instructions per warp, we can also say we

issue 45 warp load instructions at this point. Comparing our findings in Figures 4.8

and 4.10, we can conclude that each SM can concurrently issue at least 44 warp load

instructions. We conclude that there is strong evidence that outstanding memory

requests handling resources in Tesla K20 may have a design similar to PRT described

in 4.1.1 and the table has at least 44 entries. Since each entry should store 32 requests

to support the entire threads of the warp, we can also conclude that each SM can

support up to 1408 (44 x 32) outstanding unique memory requests.

42

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0

2,000

4,000

6,000

Number of threads

Va
ria

nc
e

of
La

te
nc

y
Variance

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

1000

2000

Number of threads

La
te

nc
y

(c
lo

ck
tic

ks
)

Latency

Figure 4.7: Thread-Latency plot under Tesla K20, one load per thread, and All-unique
memory pattern.

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0

0.5

1

1.5

2
·105

Number of threads

Va
ria

nc
e

of
La

te
nc

y

Variance

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

1000
2000
3000
4000
5000
6000

Number of threads

La
te

nc
y

(c
lo

ck
tic

ks
)

Latency

Figure 4.8: Thread-Latency plot under Tesla K20, two loads per thread, and All-
unique memory pattern.

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0

0.5

1

·105

Number of threads

Va
ria

nc
e

of
La

te
nc

y

Variance

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

1000
2000
3000
4000
5000

Number of threads
La

te
nc

y
(c

lo
ck

tic
ks

)

Latency

Figure 4.9: Thread-Latency plot under Tesla K20, two loads per thread, and Two-
coalesced memory pattern.

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0

0.5

1

·105

Number of threads

Va
ria

nc
e

of
La

te
nc

y

Variance

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

1000
2000
3000
4000
5000
6000
7000
8000
9000

Number of threads

La
te

nc
y

(c
lo

ck
tic

ks
)

Latency

Figure 4.10: Thread-Latency plot under Tesla K20, three loads per thread, and All-
unique memory pattern.

43

4.2 Software-Managed Cache

Software-managed cache in NVIDIA GPUs (also called shared memory) employs mul-

tiple banks to deliver high bandwidth. Every generation of NVIDIA GPUs has a cer-

tain configuration of shared memory; namely a specific number of banks and the bank

line size. A bank conflict occurs once a warp (group of threads executing instructions

in lock-step over the SIMD) executes a shared memory instruction and threads of a

warp need different rows of the same bank. Bank conflicts cause access serialization

if the bank does not have enough read/write ports to deliver data in parallel. We

developed a CUDA micro-benchmark to evaluate the impact of several parameters

on bank conflict. This test should run separately for every backend supported by the

compiler to allow hardware-specific optimizations. Below we first review the micro-

benchmark structure, followed by presenting results obtained on NVIDIA Tesla K20c.

Finally we summarize the findings.

Micro-benchmark setup

We assume one two-dimensional shared memory array per thread block. We also

assume two-dimensional thread blocks. We develop a simple kernel in which every

thread reads four locations of shared memory and writes one location. These read-

s/writes are in a loop iterated several times. The code is shown in Listing 4.2. We

report the execution time of this kernel and evaluate the impact of the following

parameters in the kernel body:

• Datatype size (TYPE): The datatype size of shared memory array is the

number of bytes allocated for each element of array. Variations in datatype

size impact bank conflict since it determines the layout of array in the shared

memory (e.g. one element per bank, two elements per bank, etc.).

• 2D array allocation: We investigate two alternatives in allocating 2D shared

memory: 2D array notation or 1D array notation (flattened notation). 2D array

notation is simpler in indexing and code readability. We are also interested

to understand whether flattened notation has a different layout in the shared

memory from 2D array.

• Padding (PAD): When the size of shared memory array is multiple of memory

banks, adding a small padding to the array can mitigate the bank conflict. The

44

Listing 4.2: CUDA micro-benchmark for understanding shared memory.

// compiled for different TYPE, ITER, PAD, XY

__global__ void kernel(TYPE *GLB, int size){

__shared__ int SHD[16+PAD] [16+PAD];

// mapping config to shared memory

#ifdef XY

int row=threadIdx.x, rows=blockDim.x;

int col=threadIdx.y, cols=blockDim.y;

#else

int row=threadIdx.y, rows=blockDim.y;

int col=threadIdx.x, cols=blockDim.x;

#endif

// fetch

int index=(threadIdx.x+blockIdx.x*blockDim.x)*size+

(threadIdx.y+blockIdx.y*blockDim.y);

SHD[row][col]=GLB[index];

// computation core

int S = (row==(rows-1))?row:row+1;

int N = (row==0) ?0 :row-1;

int W = (col==(cols-1))?col:col+1;

int E = (col==0) ?0 :col-1;

int k=0; TYPE sum=0;

for(k=0; k<ITER; k++){

sum=(SHD[row][col]+ SHD[S][col]+ SHD[N][col]+ SHD[row][E]+

SHD[row][W])*0.8;

__syncthreads(); SHD[row][col]=sum; __syncthreads();

}

// write-back

GLB[index]=SHD[row][col];

}

padding increases the row pitch, spreading the columns of a row across different

banks.

• Access pattern: Since bank conflict only occurs among the threads of the same

warp, it is important to mitigate bank conflict algorithmically. We evaluate the

impact of these algorithmic optimizations by mapping threads of the thread

block to different dimensions of the shared memory array. Operating in XY

mapping, threads along the x dimension of the thread block are mapped to the

first dimension of the shared memory array and threads along the y dimension

are mapped to the second dimension. YX mapping reverses this as threads

45

Figure 4.11: Comparing execution time of kernel under various shared memory con-
figurations.

along x and y dimensions are mapped to the second and first dimensions of the

array, respectively.

• Iterations (ITER): Number of iterations of the loop in the kernel body. This

number indicates the ratio of shared memory accesses to global memory ac-

cesses.

Results

Figure 4.11 reports the execution time of the kernel in Listing 4.2 under various

configurations. Bars report the execution time for three different ITERs (1, 2, and 4),

two TYPEs (4-byte integer and 8-byte floating-point), two array allocation schemes

(2D and flattened 2D), two shared memory access patterns (XY and YX), and two

padding sizes (zero and one).

As shown in the figure, TYPE has modest impact on the execution time. Also

the allocation scheme has minor impact on performance. The latter suggests that the

layout of 2D array in the shared memory banks is similar to that of the flattened 2D

array.

Access pattern, however, impacts performance significantly. In this benchmark,

YX mapping delivers a better performance compared to XY. This is explained by

how threads are grouped into warps. Warps are occupied first by the threads along

the x dimension and then by the threads along y. Therefore threads along x should

access consecutive words in order to reduce shared memory bank conflict. This is

precisely what YX mapping does.

46

As shown in the figure, adding a padding to the array can have an impact similar to

that of access pattern tunings, lowering the execution time roughly the same amount.

Adding a padding to the array can lower the execution time by 57% and 56% under

double and int, respectively. It should be noted that under the cases where the array

is padded there is still room for improvement as evidenced by the results. Under one

padding, modifying the code algorithmically for reducing bank conflict, as comparing

XY to YX shows, can further lower the execution time by 8% (for both int and

double).

Increasing the number of iterations (ITER) increases the importance of the shared

memory performance in the overall performance. For larger iterations, the impact of

access pattern and padding is more significant. For example, under one iteration, the

gap between zero-padding and one-padding is 23%. This gap grows to 37% and 55%

under 2 and 4 iterations, respectively.

Summary of findings

We make the following conclusions from the findings presented in this section and use

them to optimize our implementations. First, the layout of 2D arrays allocated in the

shared memory is found to be the same as flattened 2D arrays. Since no performance

advantage is found in using flattened 2D arrays, we use multi-dimensional arrays

for caching multi-dimensional subarrays to simplify array indexing code generation.

Second, our implementation adjusts mapping of parallel loops to x and y dimensions

of the thread blocks with the goal of having threads along x accessing consecutive

bytes. We use a heuristic to map the most inner parallel loop to the x dimension of

the grid. This is due to the fact that, intuitively, the inner loop has stronger locality

and traverses arrays column-wise. Third, adding a small padding can pay off if other

compiler optimizations do not allow mapping inner parallel loops over x dimension.

47

Chapter 5

Efficient Implementation of

OpenACC cache Directive on

NVIDIA GPUs

OpenACC’s programming model presents a simple interface to programmers, offering

a trade-off between performance and development effort. OpenACC relies on com-

piler technologies to generate efficient code and optimize for performance. The cache

directive is among the challenging to implement directives. The cache directive al-

lows the programmer to utilize accelerator’s hardware- or software-managed caches

by passing hints to the compiler. In this chapter, we investigate the implementation

aspect of cache directive under NVIDIA-like GPUs and propose optimizations for

the CUDA backend. We use CUDA’s shared memory as the software-managed cache

space. We first show that a straightforward implementation can be very inefficient,

and undesirably downgrade performance. We investigate the differences between this

implementation and hand-written CUDA alternatives and introduce the following op-

timizations to bridge the performance gap between the two: i) improving occupancy

by sharing the cache among several parallel threads and ii) optimizing cache fetch and

write routines via parallelization and minimizing control flow. Investigating three test

cases, we show that the best cache directive implementation can perform very close

to hand-written CUDA equivalent and improve performance up to 2.4X (compared

to the baseline OpenACC.)

The rest of this chapter is organized as follows. In Section 5.1 we discuss inef-

ficiencies of a näıve cache implementation. In Section 5.2 we present our proposed

48

implementations for the cache directive. In Section 5.3 we introduce optimizations

applicable to the proposed implementations. In Section 5.4 we evaluate performance

of the proposed methods. In Section 5.5 we discuss the limitations of our approach.

Finally, in Section 5.6 we summarize our findings.

5.1 Motivation

OpenACC API is designed to program various accelerators with possibly different

cache/memory hierarchies. Generally, the compiler is responsible for generating an

efficient code to take advantage of the hierarchies. Static compiler passes can figure

out specific variables or subarrays with an opportunity for caching. However, as static

passes are limited, OpenACC API also offers a directive, allowing programmers to

hint the compiler. The cache directive is provided to facilitate such compiler hints.

The directive is not accelerator-specific and is abstracted in a general form. These

hints specify the range of data showing strong locality within individual iterations of

the outer parallel loop, which might benefit from caching.

The cache directive is used within a parallel or kernels region. The directive

associates with a for loop (where the locality is formed) and can be used over or in

the loop. The line below shows the syntax of the directive in C/C++:

#pragma acc cache(var-list)

var-list passes the list of variables and subarrays. Subarray specifies a particular

range from an array with the following syntax:

arr[lower:length]

lower specifies the start index and length specifies the number of elements that

should also be cached. lower is derived from constant and loop invariant symbols.

This can also be an offset of the for loop induction variable. length is constant.

According to OpenACC specification [77], variables and subarrays listed in var-list

should be fetched into the highest level of the cache for the body of the loop. We

refer to the scope of the loop as cache region. In the cache region, all accesses to the

variables and subarrays listed in var-list should be served from the cache.

Listing 5.1 shows an example of the cache directive. The example is based on

one-dimensional stencil algorithm. 1D stencil smooths the values of array iteratively,

repeating for certain number of iterations, here K times. In this example, the array

length and 1D stencil radius are LEN and one element, respectively. The new value

of every element is calculated as the average of three elements; the element and right

49

and left neighbors. The programmer can provide a hint to the compiler to highlight

this spatial locality within each iteration of the parallel loop. On line #7, the cache

directive hints the compiler that each iteration of the loop requires three elements

of a[], starting from i-1. Provided with this hint, the compiler can potentially cache

this data in registers, software-managed cache, or read-only cache (depending on

the target). Also depending on the accelerator-specific optimization strategies, the

compiler can ignore the hint, which is not the focus of this study.

Listing 5.1: The cache directive example; one-dimensional stencil.

1 #pragma acc data copy(a[0:LEN],b[0:LEN])

2 for(n=0; n<K; ++n){

3 #pragma acc parallel loop

4 for(i=1; i<LEN-1; ++i){

5 int lower = i-1, upper = i+1;

6 float sum = 0;

7 #pragma acc cache(a[(i-1):3])

8 for(j=lower; j<=upper; ++j){

9 sum += a[j];

10 }

11 b[i] = sum/(upper-lower+1);

12 }

13 float *tmp=a; a=b; b=tmp;

14 }

Figure 5.1 compares the performance of two different cache directive implemen-

tations (näıve and optimized) for the code listed in Listing 5.1. These two imple-

mentations are compared to the baseline (which does not use the cache directive).

The näıve implementation isolates cache space to each parallel iteration of the loop.

The optimized implementation is equipped with optimizations later introduced in this

chapter and exploits the opportunity for sharing cached elements among parallel iter-

ations. Consequently, optimized delivers more efficient cache implementation through

better occupancy, cache sharing, and initial fetch parallelization. We explain each of

these optimizations in the rest of the chapter. This figure emphasizes the importance

of optimizing cache implementation.

50

B
as

el
in

e

N
ai

ve

O
pt

im
iz

ed

B
as

el
in

e

N
ai

ve

O
pt

im
iz

ed

B
as

el
in

e

N
ai

ve

O
pt

im
iz

ed

B
as

el
in

e

N
ai

ve

O
pt

im
iz

ed

0
1.0
2.0
3.0
4.0
5.0
6.0

N
or

m
al

iz
ed

Ti
m

e

1K 16K 128K 2M

Figure 5.1: Comparing näıve and optimized cache implementations under 1D stencil
kernel listed in Listing 5.1 (30-element radius, 1K, 16K, 128K, and 2M elements.)

5.2 Implementations

In this section, we present three cache directive implementations for accelerators

employing software-managed cache. We discuss methods for the case where the list

of variables consists of subarrays (simplified versions of the presented methods are

applicable for scalar variables.). For implementing the cache directive, the compiler

requires two pieces of information: i) the range of the data to be cached and ii) the

array accesses (within the cache region) that their array index value falls within the

subarray range (we assume pointer aliasing is not the case and pointers are declared

as restricted type in the accelerator region, using C’s restrict keyword.). Using the

information provided through the directive, the compiler knows the subarray; data

that should be cached. To gather the second piece of information, the compiler

must examine the index of every array access in the cache region. If the compiler

could statically assure that the index falls within the cache range, the array access

might simply be replaced by a cache access in the code. Otherwise, the compiler

should generate code to decide to fetch from the cache or global memory on-the-

fly. Therefore, depending on the code, the compiler may generate a different control

flow. As we show in this chapter, this can be very expensive to calculate in runtime.

Starting from OpenACC 2.5 [77], the following restriction has been added to the cache

directive specification: within the cache region, all references to an array listed in the

cache directive must refer to the range specified in the cache directive. Our first two

proposed methods (EHC and RBC) comply with the older OpenACC specification

[76, 75] and are suitable for applications written in older OpenACC versions (e.g.

v2.0). Our third method takes advantage of the restriction added in OpenACC 2.5

to highly optimize the implementation.

51

The first method is an emulation of hardware-managed cache through software-

managed cache. To this end, data and tag arrays are maintained in the software-

managed cache. Operations of hardware cache is emulated using these two arrays.

The second and third methods are range-based caching. The second method stores

the lower and length specifiers and checks if the value of the index falls within this

range. The third method assumes all indexes fall into the fetched range and uses a

simple operation to map array indexes to cache locations. Below we elaborate on

these methods.

5.2.1 Emulating Hardware Cache (EHC)

Overview. Two arrays are allocated in the software-managed cache; data and tag.

Data array stores the elements of the subarray. Tag array stores the indexes of

subarray elements that are currently cached. Tag array can be direct-mapped, set-

associative, or fully-associative to allow caching the entire or part of the subarray

transparently. The decision depends on the subarray size and accelerator capabilities.

Pros and cons. The main advantage of this method is the ability to adapt

to the available cache size. If the cache directive demands a large space and the

accelerator’s cache size is small, this method allows storing only a portion of the

subarray (other methods might ignore the directive in this case). There are two

disadvantages with this method though. First, storing the tag array in the software-

managed cache lowers the occupancy of the accelerator and limits concurrent threads.

Second, at least two cache accesses (tag plus data) are made for every array access,

increasing the read/write delay significantly. In terms of operations, each global

memory access is replaced by two cache accesses and few other logical/arithmetic and

control operations. This significant overhead impairs the performance advantages as

the total latency of the cache hit can exceed the global memory latency (depending

on the accelerator’s design).

5.2.2 Range-based Conservative (RBC)

Overview. One array and two pointers are allocated in the software-managed cache.

The array stores the subarray. Two pointers keep the range of (global) indexes stored

in the cache. One of the pointers points to the start index and the other points to the

end index (or the offset from the start). Value of these pointers are within the scope of

the original array (located in global memory) and subtracting these pointers returns

52

the size of the cached array. To check if the array index falls within the subarray range

or not, the index is checked against the range kept by pointers. Two comparisons

evaluate this; index ≥ start && index < end. If the condition holds, data is fetched

from the cache, otherwise from global memory. Moreover, if the condition holds, the

index should be mapped from global memory to cache space. The operation for this

mapping is a subtraction (index - start).

Pros and cons. The cache directive always points to a stride of data. This

method exploits the fact that elements of subarray are a row of consecutive elements

from the original array and minimizes the overhead for maintaining the track of the

cached data (compared to EHC). The method stores two pointers pointing to the start

and end of the stride. The method can be extended to multi-dimensional subarrays by

storing a pair of pointers per dimension. The only disadvantage of this method is the

performance overhead of the control flow statement generated for checking whether

the index falls within the range of stride or not. This control statement might be an

expensive operation for multi-dimensional subarrays (2 + 1 logical ops. plus a branch

for 1D, 4 + 3 logical ops. plus a branch for 2D, etc.).

5.2.3 Range-based Intelligent (RBI)

Overview. This method improves RBC one step further and assumes array indexes

always fall within the subarray range. This avoids the costly control flow statements

for evaluating whether the data is in the cache or not. The compiler may use this

method if the compiler passes are able to find the range of values of the index statically.

Pros and cons. This method has significant performance advantage over RBC

as it avoids the costly control statements for checking if the data exists in the cache

or not. Assuring that the index always falls within the fetched stride was not a trivial

compiler pass in the past. The restrictions added in the latest OpenACC version have

addressed this by limiting the subarray references. Accordingly, the latest version

of OpenACC (2.5 released in November 2015) adds a restriction to cache directive

requiring all references to the subarray lie within the region being cached [77]. This

essentially means RBI can be used with all applications that follow OpenACC ≥ 2.5.

5.2.4 Example

Listing 5.2 and 5.3 show the CUDA implementations of the methods explained above.

Three procedures are implemented for each method: i) cache fetch(), ii) cache read(),

53

and iii) cache write() (as a performance issue, these procedures are declared inline

to avoid procedure calls within the accelerator region.). The accelerator code is gen-

erated to call cache fetch() early before the cache region starts. This procedure is

responsible for fetching the data into the cache. Within the cache region, the com-

piler replaces every array read with cache read() call and array write statement

with cache write() call. For these implementations, we assume a write-through

cache (alternative is discussed in Section 5.3.3.).

Listing 5.2: Implementation of Emulating Hardware Cache (EHC) in CUDA.

1 __device__ void __cache_fetch(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned*

ctag_ptr,

2 unsigned st_idx, unsigned en_idx){

3 for(unsigned i=st_idx; i<en_idx; i++){

4 unsigned cache_idx=acc_idx&0x0ff; //direct map

5 c_ptr[cache_idx]=g_ptr[i]; // update data array

6 ctag_ptr[cache_idx]=i; // update tag array

7 }

8 }

9 __device__ PTRTYPE __cache_read(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned*

ctag_ptr,

10 unsigned st_idx, unsigned en_idx, unsigned acc_idx){

11 unsigned cache_idx=acc_idx&0x0ff; //direct map

12 if(ctag_ptr[cache_idx]==acc_idx){

13 return c_ptr[cache_idx]; // read from cache

14 }else{

15 c_ptr[cache_idx]=g_ptr[acc_idx]; // read from global memory, update

data

16 ctag_ptr[cache_idx]=acc_idx; // and tag arrays

17 return c_ptr[cache_idx]; // read from cache

18 }

19 }

20 __device__ void __cache_write(PTRTYPE* g_ptr, PTRTYPE* c_ptr, unsigned*

ctag_ptr,

21 unsigned st_idx, unsigned en_idx, unsigned acc_idx, PTRTYPE value){

22 unsigned cache_idx=acc_idx&0x0ff; //direct map

23 if(ctag_ptr[cache_idx]!=acc_idx)

24 ctag_ptr[cache_idx]=acc_idx; // update tag

54

25 g_ptr[acc_idx] =c_ptr[cache_idx] =value; // write-through

26 }

Listing 5.2 shows the CUDA implementation of EHC where the tag array mod-

els a direct-map cache. For this example, we assume a 256-entry cache. In this case,

mapping from global memory indexes to cache space is a single logical operation. List-

ing 5.3 shows the CUDA implementation of RBC. RBI implementation is the same

as Listing 5.3, except the control statement in cache read() and cache write() is

removed as the condition of the control statement is always true in RBI. In this List-

ing, the mapping is an arithmetic operation; subtracting index from the start pointer.

cache fetch() routine in all implementations has a for loop statement. Later in Sec-

tion 5.3.2, we discuss opportunities to accelerate this loop through parallelization.

5.3 Implementation Optimizations

In this section, we introduce optimizations for implementations introduced in the

previous section. Specifically, we present optimizations for cache fetch routine, cache

sharing, cache writes, and minimizing index mapping overhead.

5.3.1 Cache Fetch Routine

The cache fetch routine is called before cache region starts. This is done once per

parallel instance of the loop which the cache directive is associated with (the fetch

routine might be called multiple times, if written in a sequential loop.). If the cache

region is a large and time consuming code block, this routine’s performance may not

be the limiting factor. Otherwise, if the cache region is short, the performance of this

routine is critical to the overall performance.

Performing our evaluations under NVIDIA GPUs, we found that minimizing con-

trol flow statements comes with significant performance advantage. The fetch routine

has a for loop statement (as presented earlier in Section 5.2.4) which imposes control

flow overhead. Loop unrolling can be employed to reduce this overhead, as the length

of the loop is a compile-time constant (equal to the length of the subarray). Also

the compiler can reduce this overhead further by sharing a single for loop among

multiple subarray fetches. Compiler heuristics can decide if the loop can be shared

among multiple subarrays. For example, the compiler can read the cache directive

55

and group the subarrays having equal length. Subsequently the grouped subarrays

can share the same for loop, as the number of iterations for fetching the data is the

same for all of them.

Listing 5.3: Implementation of Range-based Conservative (RBC) in CUDA.

1 __device__ void __cache_fetch(PTRTYPE* g_ptr, PTRTYPE* c_ptr,

2 unsigned st_idx, unsigned en_idx){

3 for(unsigned i=st_idx; i<en_idx; i++)

4 c_ptr[i-st_idx]=g_ptr[i];

5 }

6 __device__ PTRTYPE __cache_read(PTRTYPE* g_ptr, PTRTYPE* c_ptr,

7 unsigned st_idx, unsigned en_idx, unsigned acc_idx){

8 if(acc_idx>=st_idx && acc_idx<en_idx){

9 unsigned cache_idx=acc_idx-st_idx;

10 return c_ptr[cache_idx];

11 }else

12 return g_ptr[acc_idx];

13 }

14 __device__ void __cache_write(PTRTYPE* g_ptr, PTRTYPE* c_ptr,

15 unsigned st_idx, unsigned en_idx, unsigned acc_idx, PTRTYPE value){

16 if(acc_idx>=st_idx && acc_idx<en_idx){

17 unsigned cache_idx=acc_idx-st_idx;

18 c_ptr[cache_idx]=value;

19 }

20 g_ptr[acc_idx]=value;

21 }

Another opportunity to optimize the for loop is to parallelize the loop. A number

of parallel threads, e.g. equal to the size of the thread block, can be employed to fetch

the data into the software-managed cache. If the compiler is not using parallel threads

for another task, parallel fetch can simply achieve this. However, if parallel threads

have already been employed to execute parallel tasks, then the compiler should assure

that while threads collaborate for fetching the data, they maintain a separated view

of the cache, specially in the case of cache writes. We explain this further in Section

5.3.2.

56

5.3.2 Cache Sharing

Considering the relative nesting of the cache directive in respect to parallel loops,

there are two types of parallel loops: outer parallel loops and inner parallel loops.

Iterations of inner parallel loops already share the same data. In this section we

introduce a method to find data sharing among the iterations of outer parallel loops.

Listing 5.4 clarifies outer and inner loops in an example.

Listing 5.4: Example of inner and outer parallel loops around cache.

1 #pragma acc parallel loop

2 for(i=0; i<N; i++){ // OUTER LOOP:

3 // depending on X and Y, the subarray

4 // may or may not be shared among iterations

5 #pragma acc cache(subarray[X:Y])

6 { // beginning of cache region

7 #pragma acc loop

8 for(j=0; j<N; j++){ // INNER LOOP:

9 // the subarray is shared among all iterations

10 }

11 } // end of cache region

12 }

The cache directive is located within one (or more) outer parallel loop(s) and the

cache space should be allocated once per parallel instance of outer parallel loop(s).

The compiler can optimize cache utilization by unifying the allocations of common

data and sharing them among parallel iterations. When it comes to cache directive

implementations in CUDA, sharing data between parallel iterations is efficiently fea-

sible by mapping parallel iterations (in OpenACC) to threads of the same thread

block (in CUDA), sharing data through CUDA shared memory.

We have different methods for cache sharing under EHC, RBC, and RBI. Under

EHC, cache sharing can be achieved by sharing one single larger data and tag arrays

among all iterations. The complexity is in efficiently managing consistency of data

and tag arrays, considering parallel accesses to the cache may occur from different

iterations. Currently, the only mechanism in CUDA to maintain the consistency is to

update data and tag arrays atomically using atomic operations. Since this severely

slows down the performance, we found cache sharing unpromising in EHC. Below we

discuss cache sharing method under RBC and RBI.

57

We decompose the cache sharing problem under RBC and RBI to five subprob-

lems: i) extract sharing, ii) find sharing width, iii) renew cache scope, iv) fetch

collaboratively, and v) optimize cache size. Below we discuss each problem.

Extract Sharing

The problem is to map outer parallel loops (loops that are marked by the OpenACC

loop directive as parallelizable) to thread hierarchies with the constraint of maximiz-

ing the subarray overlap among threads of the thread block. Listing 5.5 presents

a compiler pass as a solution to this problem. The problem inputs are the cache

directive (code block where pragma is injected and list of subarrays), outer parallel

loops (loop handle, induction variable, and increment step), and the kernel code. The

problem output is the mapping of loop iterations to CUDA thread block dimensions.

58

Listing 5.5: Compiler pass that extracts cache sharing opportunity and suggests a

mapping to maximize the overlap among subarrays of consecutive iterations.

Inputs:
cache: the code block id of the cache region

subarrays: array of subarrays listed in the cache directive
Ls: array of outer parallel loops, indexed by induction

variables
IDs: array of induction variables associated with outer

parallel loops
code: the kernel code

Output:
mapping: structure showing the parallel loops to kernel

dimensions mapping
Begin
final_mapping = []
skipped_subarray = []
for subarray in subarrays
unmapped_dimensions = [x, y, z]
suba_mapping = []
for dimension in subarray
lower, length <- get_specifiers(dimension)
if is_linear(lower, IDs, code, Ls)
rate, inductionVar, offset <- get_linear_params(lower, IDs,

code, Ls)
// map parallel loop iterated by inductionVar to an unmapped

dimension
suba_mapping.push(Ls[inductionVar] -> unmapped_dimension.pop())

if not is_contrary(final_mapping, suba_mapping)
mapping = merge(final_mapping, suba_mapping)

else
skipped_subarrays.push(subarray)

return final_mapping
End

The pass iterates over the subarrays listed in the cache directive. For each dimen-

sion of the subarray (dealing with multi-dimensional subarrays), lower and length

specifiers are read. If lower is a linear function of one single induction variable, con-

secutive iterations of the loop corresponding to the induction variable are considered

for sharing (see examples in Table 5.1). is linear() function returns true if i) lower

specifier is a linear function of an induction variable and ii) the increment step of

the corresponding loop is linear (e.g. i+=1, i-=1, i+=7, etc.). If lower is linear, it

should be in rate ∗ inductionV ar+ offset form, where inductionVar is an induction

variable and rate and offset are expressions independent of any induction variable.

Forcing the increment step to be linear assures that the neighbor threads cache sub-

sequent elements, forming a sharing range that is densely populated by the data from

59

Table 5.1: Example of cache sharing when lower specifier is a linear function of
an induction variable. Assumptions: i is an induction variable of a parallel loop,
increment step of the loop iterated by i is +1, and thread block size is 3.

subarray lower length
ranges mapped to

the iterations
shared range

a[i:3] i 3

T0 in 0 to 2
T2 in 1 to 3
T2 in 2 to 4

etc.

T0 to T2 in 0 to 4
etc.

a[2*i+1:3] 2*i+1 3

T0 in 1 to 3
T1 in 3 to 5
T2 in 5 to 7

etc.

T0 to T2 in 1 to 7
etc.

a[3*i+4:5] 3*i+4 5

T0 in 4 to 8
T1 in 7 to 11
T2 in 10 to 14

etc.

T0 to T2 in 8 to 14
etc.

neighbor threads (consecutive iterations).

get linear params() returns rate, inductionVar, and offset. suba mapping is up-

dated to map the parallel loop iterated by inductionVar to unmapped thread block

dimensions, starting with x dimension. is contrary() returns true if the suba mapping

that is found here contrasts with the mapping recorded in final mapping. If this is the

case, subarray is pushed to skipped subarrays. Cache sharing optimizations will be

skipped for the subarrays in skipped subarrays. Otherwise, final mapping is updated

to be merged with suba mapping.

Find Sharing Width

Sharing width is referred to the number of iterations (or threads) that share one

common cache. Ideally, sharing width is equal to the thread block size. This is the case

when the total number of loop iterations is multiple of the thread block size. However,

since the total number of loop iterations is a runtime variable mostly, compiler cannot

statically assure this number is multiple of thread block size. We propose three

different methods to find the sharing width in CUDA; using synchronization, kernel

arguments, or fixed.

Synchronization: This method counts the number of threads that have reached

the cache region (within the thread block). To count the number of threads, following

60

device function from CUDA API is used: syncthreads count(bool flag). To count

the number of threads along x dimension of the thread block, syncthreads count is

called with the argument threadIdx.y==0 && threadIdx.z==0. Similarly, for y and

z dimensions of the thread block, the function is called with threadIdx.x==0 &&

threadIdx.z==0 and threadIdx.x==0 && threadIdx.y==0 arguments, respectively.

Kernel Arguments: This method exploits the fact that only the last thread

blocks across every dimension may have a sharing width different than the thread

block size. This width can be pre-calculated and passed to the kernel as an argu-

ment, knowing the total number of iterations and the thread block size upon kernel

launch. Within the kernel, threads check if they belong to the last thread block of the

dimension. If yes, sharing width is set to the value passed as the argument. Other-

wise, sharing width is equal to the thread block size. This method has a performance

advantage over the first method as it avoids synchronization and reduction.

Fixed: This method simply sets the sharing width equal to the thread block size.

This method is only applicable in the case where compiler can statically assure that

the total number of loop iterations is multiple of the thread block size.

Renew Cache Scope

From the notation of the cache directive, every thread knows the range from lower

to lower + length is cached. For RBC and RBI, start and end pointers are set to

these values. However, when threads of the thread block are sharing the cache, these

pointers should be recalculated, since a larger data range is cached in this case. We

propose two different methods to recalculate pointers: communicating and private.

Communicating: This method shares pointers among threads of the thread

block. To share pointers, these are declared as CUDA shared variables. To set

pointers consistently, one thread is to set start and another thread is to set end.

start pointer is set to lower by the thread that is demanding subarray’s elements

located at the lowest address. This is the first thread within the sharing width, if the

corresponding loop has increasing increment step (e.g. +=1, +=3, etc.). Otherwise, if

the corresponding loop has decreasing increment step (e.g. -=1, -=3, etc.), this thread

is the last thread within the sharing width. Similarly, end pointer is set to lower +

length by the thread that is demanding subarray’s elements located at the highest

address. This is the last thread within the sharing width, if the corresponding loop

has increasing increment step. Otherwise, if the corresponding loop has decreasing

61

increment step, this thread is the first thread within the sharing width.

Private: This method allocates start and end pointers privately for each thread.

Following equations are used to recalculate start and end pointers privately:

start = lower − rate× threadID

end = start+ (length− 1) + rate× (sharingWidth− 1)
(5.1)

where lower, rate, threadID, length, and sharingWidth parameters are explained

below. lower and length are specifiers of the subarray passed to the cache direc-

tive. rate is obtained from lower by using get linear params() function in Listing

5.5. sharingWidth is the number of active threads in the cache region obtained by

the methods proposed for finding sharing width. threadID is the thread ID within

the thread block, ranging from 0 to sharingWidth - 1 in the cache region. Equations

above are applicable to the case where lower is a function of an induction variable of

a loop with an increasing increment step. Under decreasing increment step, following

equations are used:

start = lower + rate× threadID − rate× (sharingWidth− 1)

end = lower + rate× threadID + (length− 1)
(5.2)

Fetch Collaboratively

If cache sharing is applicable, threads of the thread block share one common data

in shared memory. Since the common data is composed of words located at con-

secutive addresses, threads of the thread block can be used to efficiently fetch the

data using few well-coalesced accesses in parallel. To perform this optimization, only

cache fetch() routine in Listing 5.3 needs to be modified. The for loop statement

should be modified to:

for(unsigned i=threadIdx.x+st idx; i<en idx; i+=blockDim.x)

This is for the case where the subarray is one-dimensional and the parallel loop

is mapped to x dimension of the thread block. For multidimensional subarrays, this

loop is replicated but modified to reflect correct mapping of parallel loops to thread

block dimensions.

62

Optimize Cache Size

When cache is not shared, each thread demands length elements from shared memory.

While sharing the cache among threads of the thread block, it might seems length ∗
sharingWidth elements from shared memory are required. This is correct as long

as subarrays of consecutive loop iterations are located back to back in the memory.

Otherwise, if there is an overlap or gap among subarrays, this number overestimates

or underestimates the exact size. We use the following formula to optimize the cache

size:

length+ rate ∗ (sharingWidth− 1)

where sharingWidth is the number of active threads in the cache region ob-

tained by the methods proposed for finding sharing width. length is a specifier of

subarray passed in to the cache directive. rate is obtained from lower by using

get linear params() function in Listing 5.5.

5.3.3 Cache Write Policy

Writing to the subarray in the cache region invokes the write routine. We assume two

alternative policies for cache write: write-back and write-through. Write-back buffers

cache writes and writes final changes back to DRAM at the end of the cache region.

Write-through writes every intermediate write to both cache and global memory.

Write-back tends to perform better under dense and regular write patterns whereas

write-through performs better under sparse irregular write patterns. We compare

performance of these two implementations in Section 5.4.2.

If the compiler implements write-back cache, an additional routine should be

invoked at the end of the cache region to write the dirty content of the cache to

global memory. For tracking the dirty lines, the compiler can decide to i) keep track

of the dirty lines through a mask or ii) assume all the lines are dirty. Although keeping

track of dirty lines can reduce the total amount of write operations, the compiler can

instead use the brute-force write-back on the GPUs for two reasons. First, tracking

dirty lines demands extra space from the software-manage cache to store the dirty

mask. This, in turn, lowers the occupancy of GPU. Second, the write-back routine

can include extra control flow statements to filter out dirty lines. These control flow

statements can harm performance (e.g. limiting ILP and loop unrolling). For the

two reasons mentioned above, intuitively we believe the brute-force write-back cache

delivers higher performance and we only implement this mechanism in this work.

63

5.3.4 Index Mapping

As we discussed in Section 5.2, mapping global memory indexes to shared memory

indexes involves a few arithmetic operations. To mitigate this overhead, the compiler

can allocate a register to store the output of operations for the life time of the cache

region, if the value of index is not changing in the cache region. The compiler can

also reuse this register for other array accesses, if the array indexes have the same

value. This optimization saves register usage and mitigates index mapping overhead.

5.4 Experimental Results

In this section, we first study the performance of methods introduced in Section 5.2,

under three test cases. This is followed by investigating performance of different cache

write policies. Finally, we evaluate performance portability of our implementation.

We use the IPMACC compiler [44] to compile OpenACC applications and imple-

ment the cache directive. The IPMACC framework translates OpenACC to CUDA

and uses NVIDIA nvcc compiler to generate GPU binaries. We run evaluations under

NVIDIA Tesla K20c GPU. The execution time of the kernel is measured by nvprof

[14]. Every number is harmonic mean of 30 independent samples.

5.4.1 Test Cases

Here we investigate the cache directive under three different benchmarks; matrix-

matrix multiplication (GEMM), N-Body simulation, and Jacobi iterative method.

For each benchmark, we compare the performance of four implementations (we found

EHC implementation very slow and hence we avoid further discussion on this.):

1. OpenACC without cache directive,

2. OpenACC plus cache directive implemented using RBC,

3. OpenACC plus cache directive implemented using RBI, and

4. hand-written CUDA version.

All cache-based implementations are optimized with the parallel cache fetch and

cache sharing optimizations discussed in Section 5.3. Under RBC and RBI, we use

64

Table 5.2: Development effort of the benchmarks under OpenACC, OpenACC plus
cache, and CUDA implementations.

OpenACC OpenACC+cache CUDA
GEMM 84 94 116
N-Body 81 84 108
Jacobi 145 152 189

kernel arguments as the default method for finding sharing width and we use private

as the default method for renewing cache scope.

Below we first compare development efforts of these four implementations. Next

we compare performance of these implementations. Then we investigate how these

implementations utilize GPU resources, e.g. register file and software-managed cache.

Finally, we investigate the impact of alternative optimizations on the speedup.

Development Effort

We wrote all versions of GEMM and Jacobi. For N-Body Simulation, we used the

CUDA version available in GPU Computing SDK [68] and modified the serial version

available there to obtain OpenACC versions. We did our best to hand-optimize

using the techniques that we are aware of. Table 5.2 compares the development

effort of GEMM, N-Body, and Jacobi under OpenACC, OpenACC plus cache, and

CUDA implementations. Development effort is measured in terms of the number of

statements, including declaration, control, loop, return, and assignment statements.

As reported, OpenACC plus cache can be obtained by modifying 3 to 10 lines of the

baseline OpenACC version.

Performance

GEMM: Cache-based OpenACC implementations iteratively fetch 16 × 16 tiles of

two input matrices into the software-managed cache using the cache directive and

keep the intermediate results (sum of products) in registers. The CUDA version also

implements the same algorithm using shared memory notation. Figure 5.2 compares

the performance of these implementations under various square matrix sizes, com-

pared to the baseline OpenACC (without cache). A similar trend can be observed

under different input sizes. RBI outperforms OpenACC by nearly 2.4X and per-

forms very close to CUDA. RBC, RBI, and CUDA reduce the global memory traffic

65

A
C

C
-n

oc
ac

he

A
C

C
-c

ac
he

-R
B

C

A
C

C
-c

ac
he

-R
B

I

C
U

D
A

A
C

C
-n

oc
ac

he

A
C

C
-c

ac
he

-R
B

C

A
C

C
-c

ac
he

-R
B

I

C
U

D
A

A
C

C
-n

oc
ac

he

A
C

C
-c

ac
he

-R
B

C

A
C

C
-c

ac
he

-R
B

I

C
U

D
A

A
C

C
-n

oc
ac

he

A
C

C
-c

ac
he

-R
B

C

A
C

C
-c

ac
he

-R
B

I

C
U

D
A

A
C

C
-n

oc
ac

he

A
C

C
-c

ac
he

-R
B

C

A
C

C
-c

ac
he

-R
B

I

C
U

D
A

0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

Ti
m

e

512x512 1024x1024 2048x2048 4096x4096 8192x8192

Figure 5.2: Comparing performance of four GEMM implementations under different
matrix sizes. For each bar group, bars from left to right represent OpenACC without
cache directive, OpenACC with cache directive implemented using RBC, OpenACC
with cache directive implemented using RBI, and CUDA.

significantly, compared to OpenACC. By fetching the tiles of input matrices into

software-managed cache, these implementations maximize memory access coalescing.

Also these implementations exploit the locality among neighbor threads to minimize

redundant memory fetches. Using nvprof [14], we found that RBI reduces the number

of global memory loads by 12X (under 1024x1024 matrices), compared to OpenACC

(the very same improvement is observed under RBC and CUDA too). Using RBC,

the compiler generates a code to check the memory addresses dynamically and to find

out if the address falls within the subarray range or not. If the address falls within

the subarray range, the data is fetched from the cache. Otherwise, the data is fetched

from the global memory. Under RBI, however, the compiler static passes assure that

dynamic memory accesses always fall in the subarray range (if violated, the program

can generate incorrect output). Therefore, dynamic checking for the address range

is avoided. This explains why RBI always performs faster than RBC. As shown in

Figure 5.2, RBC is 2.67X slower than RBI. This gap is caused by RBC’s extra logical

and control flow instructions per memory access, negating the gain achieved from

using the software-managed cache. For the 2D subarray of this benchmark, these

extra instructions are one branch, four comparisons, and three ANDs. We discuss

this issue further in Section 5.5.

N-Body simulation: Figure 5.3 compares four implementations of N-Body simu-

lation under different problem sizes. To improve performance using software-managed

cache, interaction between masses are computed tile-by-tile. Bodies are grouped into

66

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

A
C

C
-n

oc
ac

he
A

C
C

-c
ac

he
-R

B
C

A
C

C
-c

ac
he

-R
B

I
C

U
D

A

0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

Ti
m

e

64K 128K 256K 512K 1M 2M

Figure 5.3: Comparing performance of four N-Body simulation implementations un-
der different number of bodies.

A
C

C
-n

oc
ac

he

A
C

C
-c

ac
he

-R
B

C

A
C

C
-c

ac
he

-R
B

I

C
U

D
A

A
C

C
-n

oc
ac

he

A
C

C
-c

ac
he

-R
B

C

A
C

C
-c

ac
he

-R
B

I

C
U

D
A

A
C

C
-n

oc
ac

he

A
C

C
-c

ac
he

-R
B

C

A
C

C
-c

ac
he

-R
B

I

C
U

D
A

A
C

C
-n

oc
ac

he

A
C

C
-c

ac
he

-R
B

C

A
C

C
-c

ac
he

-R
B

I

C
U

D
A

A
C

C
-n

oc
ac

he

A
C

C
-c

ac
he

-R
B

C

A
C

C
-c

ac
he

-R
B

I

C
U

D
A

0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

Ti
m

e

1Kx1K 2Kx2K 4Kx4K 8Kx8K 16Kx16K

Figure 5.4: Comparing performance of four Jacobi iterative method implementations
under different matrix sizes.

tiles and fetched into software-managed cache one tile at a time. This lowers re-

dundant global memory instructions and DRAM accesses. RBI outperforms baseline

OpenACC by 92%-111%. While RBI performs very close to CUDA, there is still a

gap between them (8-10%). This gap is mainly the result of efficient implementation

of the fetch routine in the CUDA version. RBC is unable to improve performance

of the baseline OpenACC. This is explained by the overhead for accessing software-

managed cache; i.e., assuring the address falls within the range of data existing in the

shared memory.

Jacobi iterative method: Figure 5.4 compares four implementations of Ja-

cobi iterative method under different problem sizes. Each thread in Jacobi reads nine

neighbor elements (3-by-3 tile) and updates the value of the center element. Consider-

67

Table 5.3: Comparing occupancy of OpenACC without cache, OpenACC plus cache
(RBC and RBI), and CUDA.

GEMM N-Body Jacobi
OpenACC-nocache 100% (24, 0) 100% (32, 0) 100% (16, 0)
OpenACC-cache-RBC 75% (33, 4KB) 75% (30, 8KB) 100% (21, 1.2KB)
OpenACC-cache-RBI 100% (30, 4KB) 75% (30, 8KB) 100% (18, 1.2KB)
CUDA 100% (30, 4KB) 100% (32, 4KB) 100% (11, 1.2KB)

ing a two-dimensional matrix, calculations used by neighbor elements share significant

amount of input data (four to six elements.) Fetching this data into software-managed

cache and sharing data among threads is one way to optimize baseline OpenACC.

We employ this in RBC, RBI, and CUDA implementations. Although our analysis

shows RBC lowers global memory accesses, RBC harms overall performance when

compared to the baseline. This is explained by the overhead (control flow and logical

operations) of assuring addresses fall within the range of the data fetched into the

shared memory. RBI removes this overhead and improves performance of baseline

OpenACC by 3-6%. Despited this we observe a huge gap between RBI and CUDA.

CUDA launches thread blocks equal in size to the size of the data being used by the

thread block. RBI, however, launches thread blocks equal in size to the size of the

computations being performed by the thread block. This results in the CUDA version

using slightly larger thread block size than RBI. Here threads at the boarder of thread

block are only used for fetching the data. This reduces irregular control flow in the

fetch routine. We found that this can be effectively implemented in OpenACC to

reduce the gap between RBI and CUDA. However, we did not investigate it further

due to the high development effort required (close to CUDA equivalent), which is not

desirable for high-level OpenACC.

Occupancy

Table 5.3 reports CUDA Occupancy of different implementations of GEMM, N-Body,

and Jacobi test cases discussed above. The table reports occupancy in percentage

and, within the parentheses, the first number reports registers used per thread and

the second number report the size of shared memory used per thread block. All

implementations have the same thread block size: 256 under N-Body and 16 by 16

under GEMM and Jacobi. Occupancy is 100% in most cases, meaning that GPU is

able to run up to 2048 threads per GPU core (or Streaming Multiprocessor). There

68

1Kx1K 4Kx4K 16Kx16k
2.2

2.3

2.4

2.5

Input size

S
pe

ed
up

GEMM

128K 512K 2M
1.9

2.0

2.1

2.2

Input size

N-Body

1Kx1K 4Kx4K 16Kx16k
1

1.05

1.10

Input size

Jacobi

Synchronization Kernel arguments Fixed

Figure 5.5: Comparing speedup from different finding sharing width methods. Num-
bers are normalized to the baseline OpenACC without using the cache directive.

are three cases where the occupancy is below 100%. RBC implementation of GEMM

uses extra registers and that explains why occupancy drops below 100%. The size of

cache after cache sharing is overestimated under RBC and RBI implementations of

N-Body. This has lowered down the occupancy to 75%.

Implementation Alternatives

In Section 5.4.1, we reported performance of RBI and RBC under kernel arguments

method of finding sharing width and private method of renewing cache scope. In

this section we investigate performance of RBI under alternative methods for finding

sharing width and renewing cache scope (very similar discussion applies to RBC as

well.)

Find Sharing Width: We compare speedup from three alternative methods

for finding sharing width (kernel arguments, synchronization, and fixed), under three

test cases introduced earlier (GEMM, N-Body, and Jacobi). Fixed method simply sets

the sharing width to the thread block size. Kernel arguments method uses a control-

flow statement per dimension and sets the sharing width either to the thread block

size or a pre-calculated number (obtained from kernel arguments). Synchronization

method performs one reduction per dimension of subarray to find sharing width. As

reported in Figure 5.5, fixed method performs fastest. Although fixed method is the

fastest, it is not generally applicable. This is because compiler may not be able to

statically guarantee that the total number of loop iterations is multiple of thread

69

1Kx1K 4Kx4K 16Kx16k
1.4

1.8

2.2

2.6

Input size

S
pe

ed
up

GEMM

128K 512K 2M
1.8

1.9

2.0

2.1

2.2

2.3

Input size

N-Body

1Kx1K 4Kx4K 16Kx16k
0.9

0.95

1

1.05

1.10

Input size

Jacobi

Private Communicating

Figure 5.6: Comparing speedup from different renewing cache scope methods. Num-
bers are normalized to the baseline OpenACC without using the cache directive.

block size. If this is the case, kernel arguments method can be used instead of fixed

method. We found that the performance gap between fixed and kernel arguments is

3-5%. Synchronization method performs slowest under all test cases as reported in

Figure 5.5 and performs up to 3% slower than kernel arguments. Reductions slow

down performance of synchronization significantly for multi-dimensional subarrays.

This is the case in GEMM and Jacobi that use two-dimensional subarrays. In N-

Body, however, one-dimensional subarray is being used and synchronization method

performs close to kernel arguments.

Renew Cache Scope: We compare speedup from two alternative methods of

renewing cache scope (communicating and private), under three test cases introduced

earlier (GEMM, N-Body, and Jacobi). Communicating method shares cache pointers

among threads of the thread block and calculates the new scope collaboratively. Slow

down under communicating method is incurred by thread block synchronizations and

read/writes from shared memory. Private method, however, locally calculates the new

cache scope according to Equation 5.1 and 5.2 and avoids debilitating inter-thread

communications. As shown in Figure 5.6, private method outperforms communicating

method under all test cases, except under smallest dataset of N-Body. In this case,

the number of parallel threads is relatively low and GPU cores complete inter-thread

communication very fast (since synchronization instructions are infrequently hindered

by other instructions [54]). This makes communicating method faster than private

method in this case. Overall private method outperforms communicating method by

up to 47%.

70

Figure 5.7: Comparing execution time of kernel under various shared memory con-
figurations.

5.4.2 Cache Write

We developed two synthetic workloads to investigate performance of write-back and

write-through policies. The first workload’s write pattern is dense and regular. The

workload is of 1D Stencil type where each parallel work computes an element in the

output array, iteratively. In OpenACC terms, all parallel iterations are active (form-

ing the dense pattern) and consecutive iterations write consecutive words (forming

the regular pattern). Every parallel work serially iterates for a certain number of iter-

ations (which is a run parameter) and computes the value of the element iteratively.

The second workload is the same as the first, except that only a fraction of threads

are active (less than 2%) and only a fraction of serial iterations perform write (less

than 2%). This forms the sparse pattern.

Parameters of these workloads are parallel iterations (total number of work) and

number of serial iterations within the work. The number of serial iterations models

the frequency of cache writes. Sweeping this number from 4 to 4096, we measure the

71

performance of write-back and write-through under various cache access frequencies.

Figure 5.7 compares write-back and write-through under the two synthetic work-

loads described above (dense regular versus sparse). Two problem sizes are reported

for each workload, 4K and 128K parallel work. We observe a similar trend under

both workloads. When parallel work is massive in size (e.g. 128K work), write-back

is faster than write-through (Figure 5.7b and 5.7d). This is due to the fact that large

amount of threads can perfectly hide the latency of write-back’s final write routine.

When parallel work is small in size and write frequency is low (e.g. left side of Fig-

ure 5.7a and 5.7c), write-through outperforms write-back. For example in Figure

5.7a, write-through is faster when write frequency is lower than 16. Going beyond 16,

write-back starts to catch up with write-through. This can be explained by the higher

rate of global memory writes that write-through makes. For large write frequencies

(e.g. >64), write-through performs numerous redundant writes to global memory.

Write-back, in contrast, buffers intermediate written values (in shared memory) and

writes them all to global memory once at the end of cache region. This reduces the

total global memory writes compared to write-through and saves performance. As

presented, the performance gap between write-back and write-through increases from

7% to 34%, as write frequency increases.

5.4.3 Performance Portability

Performance portability is one of the most important motivations of using OpenACC

directives. Here we focused on devising efficient implementation of the cache direc-

tive on the most commonly used platform [66, 11, 57], NVIDIA GPUs. Intuitively,

we believe very similar optimization strategies can be followed on other similar ar-

chitectures, e.g. AMD GPUs [3], to devise an efficient implementation of the cache

directive. We leave optimization strategies on different platforms to future work.

To show the performance portability across NVIDIA GPUs, here we evaluate

our implementation on a different NVIDIA GPU, Quadro K600. In Table 5.4 we

report performance improvement from RBI implementation over the baseline Ope-

nACC (without cache) under three benchmarks: GEMM, N-Body, and Jacobi. We

limit the evaluations to single dataset per benchmark (largest dataset that could fit

in the memory of Quadro K600). For RBI configuration, we assume private method

for renewing cache scope and kernel arguments method for finding sharing width. As

shown in the table, improvements are very close. Improvements are slightly larger

72

Table 5.4: Performance improvement from RBI over the baseline OpenACC (without
cache).

Tesla K20c Quadro K600
GEMM 238.0% 255.1%
N-Body 198.0% 211.4 %
Jacobi 6.4% 2.5%

under Quadro K600 for GEMM and N-Body benchmarks. This can be explained by

the difference in the memory bandwidth of Quadro K600 and Tesla K20c. DRAM

memory bandwidth of Quadro K600 is 29 GB/s which is 7.1 times lower than the

bandwidth of Tesla K20c (208 GB/s). Accordingly, Quadro K600 is more sensitive

to the techniques that optimize memory accesses. The cache directive is an example

of these techniques and returns higher performance improvement when the memory

bandwidth is throttled (e.g. Quadro K600).

5.5 Discussion

5.5.1 EHC in CUDA

In EHC, tag and data arrays should be kept consistent. This limits cache sharing

and generally parallelism of software-managed cache operations, specially write op-

erations. For instance, if two threads miss different data and want to fetch both into

the same location, synchronization is necessary. The synchronization overhead can be

significant as the only way to handle such scenarios is to create a critical section or use

atomic operations. Because of this limitation, for performance goals, cache sharing

optimizations should be avoided on top of EHC. We exclude EHC from evaluations

as we did not find it competitive.

5.5.2 Optimizing RBC

In RBC, cache read routine is the performance limiting factor, listed in Listing

5.3. Investigating the CUDA assembly of the kernel (in sass format), we found that

the compiler eliminates branches and instead uses predicates. This, on the positive

side, eliminates extra operations for managing the post-dominator stack [19]. On the

negative side, all instructions, in both taken and not taken paths of the branch, are

73

at least fetched, decoded, and issued (some are executed as well). The nvcc compiler

uses a heuristic to employ predicates or generate control flow statements (we describe

this in Section 5.4.2 of [67]). For cache read routine of RBC, the heuristic finds

predicate advantageous. However, the overhead of the predicate version is still huge

and the routine is translated to 16 machine instructions. This explains why RBC is

slow. We believe further optimizations on RBC should be performed at the machine

level.

5.5.3 Alternative cache targets

NVIDIA GPUs have alternative on-chip caches that can be used by OpenACC com-

piler as the target of the cache directive (e.g. constant memory and texture cache)

or can be used effortlessly as an alternative to the cache directive (L1 cache and

read-only cache). Constant and texture memory are limited to read-only data. If

the subarray is written in the cache region, constant and texture memory can not

store the latest value nor deliver the latest to subsequent requests. In addition, the

precision of the application could be affected if texture memory is used. We eval-

uated the performance impact of L1 and read-only caches separately. We enforced

read-only cache using const and restrict keywords and forced the GPU to cache

global accesses through nvcc compile flags (-Xptxas -dlcm=ca) and found out that

performance improvements are less than 2%. This suggests that the advantages of

using software-managed cache is not limited to reading/writing data from/to faster

cache, but also accessing the data in fewer transactions and in a coalescing-friendly

way.

5.5.4 Explicit mapping

OpenACC API accepts hints from the programmer to explicitly specify the mapping

of loop iterations to different thread blocks (gang clause) or the same thread block

(worker and vector clauses). In this case, the compiler should generate a specific

mapping of parallel loops to CUDA thread hierarchies, forced by gang, vector, and

worker clauses. This can limit the range of compiler optimizations in sharing the cache

space among threads. Generally, as long as the mapping enforced by the clauses is a

valid configuration and does not have conflict with the outcome of the compiler pass

we propose in Listing 5.5, the compiler proceeds and exploits the sharing opportunity.

Invalid configuration is created when the sharing range is larger than the CUDA

74

shared memory size. This can be enforced by vector and worker clauses that map

loop iterations to threads of one thread block and change the thread block size across x

and y dimensions, respectively. The conflict mostly occurs when gang clause is used.

gang clause asks the compiler to map each iteration to a thread block. This can have

conflict with the compiler pass we presented in Listing 5.5, if the compiler decides to

map this loop to threads of the thread block. In the case of conflict, the compiler

can limit the sharing range, e.g. sharing only across one dimension of the grid and

ignoring the sharing along the gang loop, or even ignoring the sharing optimization,

in the worst case.

Alternative cache implementations To the best of our knowledge, currently

there are no commercial or open source OpenACC compilers that support the cache

directive. Therefore, we are unable to compare performance of our implementation to

other studies. We studied several compilers (i.e. PGI and Omni) but found none of

them supporting the cache directive. We compiled the kernels with PGI Accelerator

compiler 16.1 and found out that the compiler ignores the cache directive and does

not generate shared memory CUDA code. We also investigated several open source

frameworks, e.g. RoseACC, accULL, and Omni compiler, of which none had an

implementation for the cache directive.

5.5.5 Cache Coherency

As stated by OpenACC specification [77], it is possible to write an accelerator paral-

lel/kernels region that produces inconsistent numerical results. This is because some

accelerators (e.g. GPUs) implement weak memory model. In weak memory model,

memory coherency is not supported between operations executed by different threads

nor between subsequent operations of a single thread, unless operations are separated

by an explicit memory fence. This is the programmer’s task to ensure the correctness

of the application is not compromised by the weak memory model. Similarly, since

variables and subarrays listed in the cache directive are part of the memory hierarchy,

we assume weak memory model for the cache directive as well.

We explain the behavior of our implementation of the cache directive under this

weak memory model under two major scenarios: i) one thread has the copy, the

thread writes to the copy, and all threads attempt to read and ii) multiple threads

have copies, multiple threads write to their copy, and all threads attempt to read. The

behavior is summarized in Table 5.5. The behavior is very similar to CUDA behavior

75

when multiple threads attempt to write to the same memory location asynchronously.

Here we assume write-back policy for the cache implementation.

The first scenario assumes that one thread has a copy of a data in its cache, and

no other thread has a copy of this data. Write operations to this local copy (by the

thread) are immediately visible to the thread (marked as #1 in the table). As the

thread leaves the cache region, the global memory will be updated by the latest copy

available in the cache. While the kernel is running, threads that complete their read

access before this update read the old value. Threads that complete their read access

after this update read the new value. This behavior is marked as undefined in the

table (#2). Once the kernel runs all the threads and completes its execution, the

global memory has the new value rewritten by the thread (#3 in the table).

The second scenario assumes that multiple threads have copies of a data in their

cache and one or more threads write their local copy. Since our implementation

shares the cache among a range of threads (thread block), write operations from

other threads to their local copy is visible to the range of threads that share the

cache. Accordingly, a thread might read the value written by itself or other threads

(#4 and #5 in the table). Our implementation guarantees that one write from the

threads updates the cache, but the thread that updates the cache is unspecified.

Similar to the first scenario, once a thread leaves the cache region, the global memory

will be updated by the latest copy that is in the cache. Once the kernel completes its

execution, the global memory has the new value written by a thread, but again the

thread is unspecified.

Overall, here the behavior for the cached and uncached data is the same. In either

case, if multiple threads write to the same memory location, one thread successfully

updates the global copy, but that thread is unspecified. Accordingly, future reads

from that location might return undefined value.

5.6 Summary

In this chapter, we studied and addressed the challenges facing the OpenACC cache

directive in NVIDIA GPUs. We used CUDA shared memory as the software-managed

cache space for implementing the directive. We presented three different methods

and several performance optimizations for implementing the cache directive, among

which sharing the cache space among multiple threads and parallelizing cache fetch

76

Table 5.5: Behavior of our weak memory model cache directive implementation under
two scenarios: one write multiple reads and multiple writes multiple reads.

During the kernel After the kernel

Scenario
Seen by threads
that have a copy

Seen by other
threads

Seen by all
threads

Only one thread
has a copy
and the thread
writes to the
copy

(#1) new value
(#2) undefined:
old value or new
value

(#3) the new value

Multiple
threads have
copies and one
or more threads
write to the
copy

(#4) undefined:
old value or new
value from any
copy

(#5) undefined:
old value or new
value from any
copy

(#6) undefined:
the new value from
one unspecified
thread

and write routines are the most critical. Our results also show that i) sharing the

cache among several parallel threads is essential to have a robust performance and ii)

write-back cache outperforms write-through policy for the sparse and dense memory

patterns. Evaluating under matrix-matrix multiplication, N-Body simulation, and

Jacobi method iteration test cases, we presented an implementation that can perform

close to hand-written CUDA.

77

Chapter 6

Software-Managed Cache for

OpenACC

In this chapter, we introduce a new OpenACC directive to increase OpenACC flex-

ibility in utilizing software-managed cache (SMC). We first discuss the limitations

of the cache directive in utilizing software-managed cache. Then we propose a new

directive, referred to as fcw directive (fetch, communicate, and writeback), to address

these limitations. Then we present our experimental results in applying the directive

on a wide set of benchmarks. Then we discuss issues related to the use of the fcw

directive. Finally, we summarize our findings.

6.1 Limitations of the cache Directive

The cache directive allows an OpenACC thread to exploit GPU’s SMC. OpenACC

programmer can optimize memory accesses by reading and writing from the SMC.

However, this is not the only use case of SMC. The cache directive dedicates a cache

space to each thread and different threads may not share the intermediate results.

In CUDA programming model, certain range of threads may share their cache space

and use each other’s intermediate results. This use of SMC is crucial since it saves

costly global communications.

In the rest of this section, we investigate 1D stencil example to provide more insight

on limitations of the cache directive. Listing 6.1 shows 1D stencil in OpenACC1. Total

1In the listings presented in this section, for the sake of code readability, we exclude the code
related to corner case handling.

78

of iterations kernels are launched on the GPU. Each kernel has total of N threads.

Each thread in the kernel reads three words and writes one word, for the total of

iterations×N × (3 + 1) global memory instructions.

Listing 6.1: 1D Stencil in OpenACC.

#define BLOCK_SIZE 256

void stencil(int *src, int *dst, int N){

#pragma acc kernels loop independent vector(BLOCK_SIZE)

for(int xidx=0; xidx<N; ++xidx)

dst[xidx]= (src[xidx-1]+src[xidx]+src[xidx+1])/3;

}

main(){

for (int t = 0; t < iterations; ++t){

int *temp = src; src = dst; dst = temp;

stencil(src, dst, N);

}

}

The same algorithm as Listing 6.1 can be implemented in CUDA. This is presented

in Listing 6.2.

Listing 6.2: 1D Stencil in CUDA.

#define BLOCK_SIZE 256

__global__ void stencil(int *src, int *dst, int N){

int xidx = threadIdx+blockIdx.x*BLOCK_SIZE;

dst[xidx]= (src[xidx-1]+src[xidx]+src[xidx+1])/3;

}

main(){

for (int t = 0; t < iterations; ++t){

int *temp = src; src = dst; dst = temp;

stencil<<<N/BLOCK_SIZE, BLOCK_SIZE>>>(src, dst, N);

}

}

Ghost zone optimization for GPUs has been proposed [59] to reduce kernel launches

and global memory accesses. Ghost zone optimization suggests trading global memory

accesses for redundant computations. Since memory access is expensive and compu-

79

tation is cheap in GPUs, this optimization returns significant benefits on the GPUs.

Listing 6.3 presents 1D stencil with ghost zone optimization in CUDA. Compared to

Listing 6.1 and 6.2, the number of kernel launches is lowered by ghostzoneSize times

(this lowers the number of global memory reads and writes.). Instead, this version

imposes higher number of thread blocks and executed more instructions per thread

(less expensive instructions though). In each kernel call, each thread makes two global

memory accesses (one read and one write), for the total of
iterations×N × 2

ghostzoneSize
. In

this algorithm, ghostzoneSize is the knob to tune the application for the best perfor-

mance; the larger the value the lower the kernel calls and the higher the redundant

computations, the smaller the value the higher the kernel calls and lower the re-

dundant computation. The key difference between ghost zone implementation and

Listing 6.1 and 6.2 is that threads communicate within-the-kernel through the SMC

channel instead of across-the-kernels through global memory channel.

Ghost zone optimization may not be implemented in OpenACC using the cache

directive since there is not a defined communication model among iterations of a par-

allel work-sharing loop. We propose a new directive and well-defined communication

model to enable this functionality of SMC in OpenACC. Using the proposed directive,

certain range of iterations will be able to share data within the kernel through SMC.

6.2 Proposed Directive

The fcw directive is applied over a region of code and is only available within kernel-

s/parallel regions. This directive serves as a compiler hint to fetch a data chunk into

local software-managed cache (SMC), replace global memory accesses with SMC ac-

cesses, allow concurrent accelerator threads to communicate through SMC, and write

the local data back to global memory. In Section 6.4, we explain differences between

the fcw and cache directives.

The motivation behind fcw stems from the fact that consequent iterations of a par-

allel loop often share data. fcw allows neighbor iterations to share intermediate data.

It allows fast communication between neighbor iterations through SMC, replacing

costly global memory communication/synchronization. In addition, the compiler can

mitigate redundant memory fetches by exploiting programmers’ hints. The program-

mer specifies the data that is shared among consequent iterations. This information

guides the compiler to fetch common data by few well-coalesced requests, preventing

80

Listing 6.3: 1D Stencil with ghost zone optimization in CUDA.

#define IN_RANGE(x, min, max) ((x)>=(min) && (x)<=(max))

#define BLOCK_SIZE 256

__global__ void stencil_ghostzone(int *src, int *dst, int ghostzoneSize,

int N){

__shared__ int prev[BLOCK_SIZE];

int bx = blockIdx.x; int tx = threadIdx.x;

int small_block_cols = BLOCK_SIZE-ghostzoneSize*2;

int blkX = small_block_cols*bx-1; int xidx = blkX+tx;

if(IN_RANGE(xidx, 0, N-1)) prev[tx] = src[xidx];

bool computed=false;

for (int i=0; i<ghostzoneSize; i++){

computed = false;

if(IN_RANGE(tx, i+1, BLOCK_SIZE-i-2)){

computed = true;

int avg = (prev[W]+prev[tx]+prev[E])/3;

__syncthreads(); prev[tx] = avg; __syncthreads();

}

}

if (computed) dst[xidx]=prev[tx];

}

main(){

int smallBlockCol = BLOCK_SIZE-ghostzoneSize*2;

for (int t = 0; t < iterations; t+=ghostzoneSize){

int *temp = src; src = dst; dst = temp;

stencil_ghostzone<<<N/smallBlockCol, BLOCK_SIZE>>>(src, dst,

ghostzoneSize, N);

}

}

repeated global memory fetches, and reusing data at the SMC bandwidth.

fcw gives the programmer the option to specify the shared data by denoting the

range of indexes that need to be cached in SMC. This range can be specified with

respect to constant terms or even the induction variable of the outer parallel work-

sharing loop. In either case, the data of neighbor iterations may construct a contin-

uous memory chunk. The compiler generates a code to fetch this chunk from global

memory to SMC. Future memory accesses within this chunk use SMC bandwidth,

instead of global memory. Otherwise, if the range expression is derived from constant

terms, the same data can be fetched/shared among all iterations of the loop.

A common scenario occurs when fcw is applied within a parallel loop where the

81

range identifiers depend on the loop induction variable. In this case, the range of

indexes for an iteration may overlap with the range of indexes evaluated on its neigh-

bor iterations. The union of this overlapping data creates a consequent chunk of

data. Building on this fact, fcw can be implemented efficiently, if the OpenACC im-

plementation executes OpenACC applications over CUDA API. Under OpenACC to

CUDA translations, neighbor iterations of a parallel work-sharing loop usually map

to consequent threads of the same thread block [91]. In CUDA terms, a thread block

is the collection of certain number of consequent iterations. Therefore, CUDA shared

memory can serve efficiently as SMC to share data among the iterations of a parallel

loop (or threads of the same thread block.)

In the remainder of this section, we define fcw’s programming interface and present

examples to clarify the notation. Finally, we present a case study to show how the

notation from OpenACC can be translated to CUDA.

6.2.1 Programming Interface

We introduce fcw by the following notation:

#pragma acc fcw SMC TYPE(arrayName[PIVOT : BEFORE : AFTER])

where the parameters are described below.

arrayName is a variable name pointing to the memory location intended to be

cached in SMC.

PIVOT, BEFORE, and AFTER are guides to identify the range of data required

to be cached in SMC. PIVOT denotes the central index. Regardless of BEFORE and

AFTER, the compiler generates a code to cache the element in the PIVOT position.

BEFORE/AFTER denotes the number of elements before/after PIVOT that should

be fetched into SMC. These parameters are best explained through an example, as

we show in Table 6.1. In multidimensional arrays, the tuple of {PIVOT, BEFORE,

AFTER} can be replicated to point different dimensions of an array.

fcw can have different types which is specified by SMC TYPE clause. Although

all fcw types access the specified memory region at the bandwidth of SMC, they

differ based on three further operations: i) initializing the SMC data from global

memory (fetch), ii) making intermediate writes visible to neighbor iterations (com-

munication channel), and iii) reflecting local changes back to global memory (write-

back). Whether necessary to activate each of these three operations or not, there

are eight possible fcw types available to programmer. The eight types combine

82

all possible combinations of fetching data from global memory to SMC (or not),

creating communication channels (or not), and writing back data to global mem-

ory (or not). We investigated several CUDA benchmarks to find the most com-

mon combinations. Based on the studied workloads, we found a subset of five

combinations to be the most common among the eight: FETCH ONLY, CHAN-

NEL ONLY, FETCH CHANNEL, CHANNEL WB, and FETCH CHANNEL WB.

In FETCH ONLY, the compiler only fetches the data from global memory to SMC.

In this case, no local communication channel is created and writeback are not per-

formed. In CHANNEL ONLY, the compiler neither fetches data from global memory

to SMC nor writes it back to global memory after exiting the region. This mode is

only useful for fast interchanging/sharing intermediate data among loop iterations

through SMC. FETCH CHANNEL is similar to CHANNEL ONLY but also fetch-

es/initializes the corresponding data from global memory to SMC. CHANNEL WB

is similar to CHANNEL ONLY but also writes the final data back to global memory.

FETCH CHANNEL WB performs all of the three operations. It fetches/initializes

the data into SMC, creates a communication channel among neighbor iterations, al-

lows intermediate writes to be visible to neighbor iterations, and writes the final

value of the SMC back to global memory. CHANNEL ONLY, FETCH CHANNEL,

CHANNEL WB, and FETCH CHANNEL WB create a local communication channel

and allow intermediate changes to SMC to be visible to all threads within the same

thread block.

6.2.2 Communication Model

fcw allows fast communication through SMC. We refer to this new communication

model as inter-iteration communication. Inter-iteration communication allows com-

munication among iterations of a parallel work-sharing loop.

In this model, at the high-level programmer view, all parallel iterations are grouped

into communicating thread blocks, in which every iteration belongs to only one com-

municating thread block. Iterations within the same communicating thread block can

share data via SMC. To avoid data hazards, implicit synchronizations are performed

after every write to the location marked as SMC. Also the number of iterations be-

longing to the same communicating thread block, or the communicating thread block

size, can be configured.

CHANNEL ONLY, FETCH CHANNEL, CHANNEL WB, and FETCH CHANNEL WB

83

allow various communication patterns. CHANNEL ONLY creates the basic commu-

nication medium. It constructs a communication medium within a communicat-

ing thread block using SMC bandwidth. Iterations can share intermediate results

through this fast cache. FETCH CHANNEL, unlike CHANNEL ONLY, also fetch-

es/initializes SMC from global memory. CHANNEL WB is the same as CHAN-

NEL ONLY except it also writes back the final state into global memory. Finally,

FETCH CHANNEL -WB is different from CHANNEL WB, as it allows initializing

SMC by fetching from global memory. Notice that FETCH ONLY only allows data

reuse at SMC bandwidth and does not construct a communication channel within a

communicating thread block.

Since data hazards and race conditions may occur, sharing SMC among iterations

of the same communicating thread block needs inter-iteration synchronization. Under

inter-iteration communication, there are two kinds of synchronizations: implicit and

explicit. For fcw types including FETCH operation, there is an implicit synchroniza-

tion between iterations fetching data for a thread block. This is implicit and hidden

from the programmer as the compiler generates the associated code automatically.

Also fcw types that include CHANNEL operation contain implicit synchronization,

which is forced by the writes to SMC. For the data chunk that is marked in fcw, the

programmer can assume one barrier call before every individual memory write and one

after it. We refer to this as implicit synchronization since it is performed implicitly by

the compiler, hidden from the programmer. While implicit synchronization satisfies

the need for synchronization, programmers can use explicit synchronization to control

synchronization selectively. We add the following directive to OpenACC API, allow-

ing manual inter-iteration synchronization: #pragma acc fcw barrier. fcw barrier

synchronizes the iterations of the communicating thread block and assures that all

previous SMC writes are completed. Notice that fcw barrier can be implemented

through CUDA thread block synchronization barriers.

6.2.3 Example

Table 6.1 illustrates two examples of configuring PIVOT, BEFORE, and AFTER

parameters. In these examples, a is a pointer to a read-only array, targeted to be

cached in SMC. As specified by the first parameter, fcw type is FETCH ONLY. 6.1(a)

lists an example where the required data simply includes one element, pointed to by

the loop induction variable. In this case, the pivot element is i (the loop induction

84

Table 6.1: Examples of determining range identifiers to direct the compiler for SMC.

Example a a a
pivot before after

(a)

#pragma acc kernels loop

for(i=1; i<(size-1); ++i)

#pragma acc fcw FETCH ONLY(a[i:0:0]) i i i
{b[i]=a[i];}

(b)

#pragma acc kernels loop

for(i=1; i<(size-2); ++i)

#pragma acc fcw FETCH ONLY(a[i:1:2]) i i-1 i+2
{b[i]=a[i-1]+a[i]+a[i+2];}

variable) and fcw guides the compiler to fetch only pivot (i:0:0). In 6.1(b), the pivot

element is set to i and fcw directs the compiler to fetch a range from one element

before the pivot to two elements after the pivot (i:1:2).

In these examples, the required data of consequent iterations construct a contin-

uous memory chunk. For example in 6.1(b), the required data of every consequent

256 iterations is 259 elements. Since the threads of the same thread block execute

consequent iterations, using the information provided through fcw, the compiler can

identify the data of each thread block and map the corresponding memory chunk into

SMC. With a mapping that is invisible to the programmer, the compiler replaces ev-

ery individual array access with an SMC access. The compiler also generates proper

fetch and writeback, based on fcw type provided through SMC TYPE.

6.2.4 Case Study: Reduction

In this section, we overview our automated code generation through a sample. Our

goal is to show how fcw notation can be translated from OpenACC to CUDA. We

present a reduction case study which also shows the applicability of fcw in implement-

ing basic parallel algorithms. Listing 6.4 shows the fcw-enhanced OpenACC version.

Listing 6.5 and 6.6 show the CUDA version translated from Listing 6.4. Listing 6.5

shows the host code and Listing 6.6 shows the accelerator code.

The code shown in Listing 6.4 calculates the reduction in several kernel launches.

The outer data directive copies input arrays (a[] and b[]) to accelerators memory

85

Listing 6.4: Reduction in fcw.

01: uint TILESIZE=256, TILESIZEB=8;

02: #pragma acc data copy(a[0:N],b[0:N])

03: for(P=N; P>1; P=P/TILESIZE+(((P%TILESIZE)!=0)?1:0)){

04: int *c=a; a=b; b=c;

05: #pragma acc kernels present(a,b)

06: #pragma acc loop independent vector(TILESIZE)

07: for(i=0; i<P; i++){

08: int tileid =i>>TILESIZEB;

09: int offsetid=i&(TILESIZE-1);

10: int k=N;

11: #pragma acc fcw FETCH_CHANNEL(a[i:0:0])

12: {

13: for(y=TILESIZE/2; y>0; y>>=1)

14: if((offsetid<y) && ((i+y)<P))

15: a[i]=a[i]+a[i+y];

16: if(i==(tileid*TILESIZE))

17: b[tileid]=a[i];

18: }

19: }

20: }

before the data region and copies them back to hosts memory after the region. Within

the data region, kernels region is translated into a procedure call on accelerator. The

kernel reduces every 256 elements (TILESIZE) of a[] and stores the summation into

b[]. The outer loop iterates the kernel launches. In every iteration, the code swaps

a[] and b[] pointers, shrinks the size of arrays by a factor of TILESIZE, and launches

the kernel to reduce the new a[]. This process relapses until the size of a[] shrinks

below TILESIZE, returning the final summation in b[0].

In every kernel call, a total of P threads (equal to the current a[] size) are launched

on the device. The fcw directive guides the compiler to fetch a tile of elements for

each thread block into shared memory. Threads of the same thread block calculate

the sum of these elements at the bandwidth of SMC and write the final reduced value

to b[]. The tile size is set to TILESIZE by vector clause of the loop directive.

86

Listing 6.5: Host code of translation of fcw Reduction to CUDA.

01: #define TILESIZE 256

02: acc_create((void*)a,(N+0)*sizeof(int));

03: acc_create((void*)b,(N+0)*sizeof(int));

04: acc_copyin((void*)a,(N+0)*sizeof(int));

05: acc_copyin((void*)b,(N+0)*sizeof(int));

06: P = N;

07: for(P=N; P>1; P=P/TILESIZE+(((P%TILESIZE)!=0)?1:0)){

08: int *c = a; a = b; b = c;

09:

10: /* kernel call statement */

11: {

12: generated_kernel

13: <<<((abs((int)((P))-0))/(1))/TILESIZE+1,TILESIZE>>>

14: ((int*)acc_deviceptr((void*)a),

15: (int*)acc_deviceptr((void*)b),

16: N, P);

17: }

18: cudaError err=cudaDeviceSynchronize();

19: }

20: acc_copyout((void*)a,(N+0)*sizeof(int));

21: acc_copyout((void*)b,(N+0)*sizeof(int));

Listing 6.5 shows the CUDA code obtained by automatic translation of Listing

6.4 OpenACC. data directive memory copies are translated to OpenACC API calls,

e.g. acc create, acc copyin, and acc copyout. The code included in the kernel region

of Listing 6.4 is translated to a CUDA kernel named generated kernel. For launching

this kernel, the thread block size is derived from vector clause of the parallel loop.

Also the number of thread blocks is the number of loop iterations divided by the

thread block size.

Listing 6.6 shows the kernel code translated from the kernels region of Listing

6.4. At the beginning lines of the code (line #2), a variable is declared to obtain

the global identifier of the thread along the parallel loop. This is followed by the

declaration of loops’ induction variable (line #3), shared memory space (line#5),

and two pointers to locations in global memory (line #6). Loops’ induction variables

are declared within the kernel locally (allowing the compiler to reserve a register for

87

each of them). The size of shared memory is the sum of thread block size (TILESIZE),

number of elements before the PIVOT (BEFORE field in fcw directive of Listing 6.4,

which is 0), and number of elements after the PIVOT (AFTER field in fcw directive

of Listing 6.4, which is also 0). These are specified by the programmer via vector

and fcw clauses, respectively. Two pointers, which are assigned later in the code (line

#10 to #13), point to the start and end addresses of the global memory data chunk

(a[]) which is mapped to the shared memory space (SMCdata a) of each thread

block. The start and end pointers point to the first and last threads of the thread

block, respectively. The body of parallel loop is injected within the kernel code (line

#8 to #35). At beginning code block, each thread calculates the value of the loop

induction variable which corresponds to its thread’s global identifier (line #3). Next,

the if statement assures the parallel boundary and guards the loop body from extra

threads (line #7). As shown in Listing 6.4, the fcw type is FETCH CHANNEL. This

guides the compiler to initialize the shared memory by fetching the data from global

memory. FETCH CHANNEL also guides to create a channel to allow communication

among the threads of the thread block and make intermediate writes locally visible.

The body of the loop consists of three code portions: FCW fetch (line #9 to #19),

index precalculations (line #20 to #22), and FCW regions. FCW fetch calculates the

boundary of the tile assigned to the thread block (line #10 to #13). Line #14 to #18

use parallel threads of the thread block to fetch a data chunk from global memory

to shared memory. Compiler statically finds the unique memory indexes accessed

within fcw region and injects a code to precalculate their mapping from global space

to shared space at runtime (line #20 and #22). To create the communication channel

within the fcw region, accesses to a[] are replaced by accesses to SMCdata a. An

intra-thread block synchronization call is injected before and after every write to SMC

location.

88

Listing 6.6: Accelerator code of translation of fcw Reduction to CUDA.

1 __global__ void generated_kernel(int* a,int min,int N,int P,int* b){
2 int __kernel_getuid_x=threadIdx.x+blockIdx.x*blockDim.x;
3 int i=0+(__kernel_getuid_x);
4 /* declare the shared memory of a */
5 __shared__ int __SMCdata_a[256+0+0];
6 int __SMCstartptr_a; int __SMCendptr_a;
7 if(i<P){
8 int tileid = (i >> TILESIZEB); int offsetid = (i & (TILESIZE - 1));
9 { // FCW fetch begins

10 __SMCstartptr_a=i-0-threadIdx.x;
11 int __ipmacc_stride=blockDim.x;
12 bool lastcol= blockIdx.x==(gridDim.x-1);
13 __SMCendptr_a=(lastcol)?P-1:blockDim.x+__SMCstartptr_a-1+0;
14 int __ipmacc_length=__SMCendptr_a-__SMCstartptr_a+1;
15 int kk=threadIdx.x;
16 int idx=__SMCstartptr_a+kk;
17 if(idx<(P) && idx>=(0)) __SMCdata_a[kk]=a[idx];
18 __syncthreads();
19 } // end of FCW fetch
20 // pointer mapping
21 int __SMCidx_a_0_dim1 = i-__SMCstartptr_a;
22 int __SMCidx_a_1_dim1 = i+y-__SMCstartptr_a;
23 { // FCW region
24 for(int y = min; y > 0; y >>= 1){
25 if ((offsetid < y) && ((i + y) < P)) {
26 int sum = __SMCdata_a[__SMCidx_a_0_dim1] /* replacing a[i]*/
27 + __SMCdata_a[__SMCidx_a_1_dim1] /* replacing a[i + y]*/ ;
28 __syncthreads();
29 __SMCdata_a[__SMCidx_a_0_dim1]= sum;
30 __syncthreads();
31 }
32 }
33 if (i == (tileid * TILESIZE))
34 b[tileid] = __SMCdata_a[__SMCidx_a_0_dim1] /* replacing a[i]*/ ;
35 } // end of FCW region
36 }
37 }

6.3 Experimental Results

In this Section, we first investigate performance under fcw directive compared to

baseline OpenACC and CUDA. Then we compare the development effort of these

implementations. Finally, we investigate fcw’s performance sensitivity to thread block

size changes.

89

We use our IPMACC [44] for compiling OpenACC applications and implementing

the fcw directive. We run evaluations under NVIDIA Tesla K20c GPU. The execution

time of the kernel is measured by nvprof [14]. Every number is harmonic mean of 30

independent samples.

6.3.1 Performance

In this section, we compare the execution time of OpenACC, OpenACC+fcw, and

CUDA. Among all the benchmarks investigated in Section 3.3.1, we limit the study

to the benchmarks that utilize software-managed cache in their CUDA version. We

investigate Hotspot, Pathfinder, Dyadic Convolution, N-Body, Matrix-matrix Multi-

plication, and Needleman-Wunsch benchmarks. We do not report memory transfer

time as memory transfer times are comparable in all three implementations.

Hotspot

Figure 6.1 compares three implementations of Hotspot under different problem sizes,

ranging from 128x128 to 4Kx4K. We run Hotspot for 12 iterations. CUDA and FCW

implementations use the same algorithm referred to as ghost zone optimization [59].

This algorithm exploits SMC to reduce the number of global synchronization (or ker-

nel launches). In ghost zone optimization, thread blocks recalculate their input data,

instead of performing global synchronization and reading the output of other thread

blocks. Ghost zone optimizations create halo regions around the tile assigned to each

thread block. Halo regions overlap among neighbor thread blocks and calculations for

the points located in halo regions is redundant across neighbor thread blocks. Hence,

the size of halo region (or amount of local iterations) makes a trade-off between global

communications and redundant calculations [59]. Figure 6.1a and 6.1b report the per-

formance under two halo region sizes (or the number of local iterations). Below we

first discuss the impact of halo region size on performance. Then we compare the

launch and kernel time of FCW to other implementations, followed by the discussion

on the Hotspot’s chip size.

halo region size. Larger halo region size impacts the performance of ghost

zone implementations in two ways. On the positive side, larger halo region size

decreases the amount of inter- thread block (or global) communications, reducing

kernel launches and global memory accesses. On the negative side, larger halo region

size increases the amount of redundant computations. Figure 6.1 reports the numbers

90

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
or

m
al

iz
ed

Ti
m

e

Kernel execution Launch overhead

128x128
256x256

512x512
1Kx1K

2Kx2K
4Kx4K

(a) one local iteration for CUDA and FCW.

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

Ti
m

e

Kernel execution Launch overhead

128x128
256x256

512x512
1Kx1K

2Kx2K
4Kx4K

(b) two local iterations for CUDA and FCW.

Figure 6.1: Kernel execution/launch time of three Hotspot implementations under
different problem sizes, ranging from 128x128 to 4kx4k chip sizes. Halo region size of
(a) one element and (b) two elements.

under two halo region sizes, one element and two elements. Comparing FCW under

the same problem sizes along Figure 6.1a and 6.1b shows the impact of halo region size

on kernel launch time, global synchronization, SMC access overhead, and redundant

computations. Below we explain this further.

launch time. For larger problem sizes, e.g. 1K to 4K, kernel launch overhead

has insignificant share of the total time. For smaller problem sizes, e.g. 128x128

and 256x256, kernel launch overhead of Hotspot has a significant share in total time.

Baseline OpenACC launches several kernels to perform global synchronization across

thread blocks. FCW and CUDA save significant kernel launch time by lowering global

communications, by a factor proportional to halo region size (or local iterations). This

reduction can be seen in 6.1b by comparing FCW and CUDA to OpenACC. In this

91

case, FCW and CUDA perform two local iterations and lower the launch time nearly

by 2X, compared to OpenACC.

kernel time. Under one local iteration, FCW and CUDA perform slower than

OpenACC. This suggests that the overhead of redundant operations dominates the

global communication savings. Additionally, FCW and CUDA execute a higher num-

ber of dynamic instructions (for accessing the data at SMC), while not taking advan-

tage of SMC for reducing the global communication or reusing the data (since there

is only one local iteration). We report one iteration to show the overheads of SMC.

Generally, the number of local iterations must be larger than one to allow ghost zone

to return performance improvement. Under two local iterations, FCW and CUDA

start to perform faster than OpenACC. This suggests that the global communication

savings is taking over redundant operations, leading to performance improvement.

For the number of local iterations beyond two iterations, we found that redundant

computations negate the global communication savings and always degrade perfor-

mance. 2D halo regions, as used in Hotspot, have higher overhead than 1D regions

since they pad the tile along two dimensions, increasing redundant computations 2X

more than 1D halo regions. As we report for Pathfinder benchmark, 1D halo regions

allow higher improvements under larger halo regions.

problem size. FCW performs significantly better than baseline OpenACC for

chip sizes smaller than 256x256. We explain this by separating the discussion of launch

and kernel time. On the kernel launch time side, FCW has a huge saving in time

which comes from the ghost zone optimization that performs fewer kernel launches.

On the kernel time side, the kernel has a total of 16 thread blocks (chip size divided

by thread block size which is 16x16) and the available thread-level parallelism is not

enough to hide the memory latency effectively. Therefore, it is vital to address the

global memory latency using a technique other than multi-threading. FCW takes

advantage of SMC to mitigate average memory latency and improves performance.

However, when the chip size increases, e.g. in 512x512, thread-level parallelism grows

and provides enough threads to allow hardware to hide memory latency effectively. In

these cases, immense thread-level parallelism mitigates the performance advantages

of SMC in lowering average memory access latency and mitigating the gap between

FCW and OpenACC. Putting together the saving of kernel and launch, performance

advantages of FCW varies under different problem sizes, ranging from 11% (10% in

the kernel and 1% in the launch) in 4Kx4K chip size to 58% (21% in the kernel and

37% in the launch) in 128x128 chip size.

92

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Ti
m

e

Kernel execution Launch overhead

128K 256K 512K 1M 2M 4M

(a) two local iterations for CUDA and FCW.

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Ti
m

e

Kernel execution Launch overhead

128K 256K 512K 1M 2M 4M

(b) 12 local iterations for CUDA and FCW.

Figure 6.2: Kernel execution/launch time of three Pathfinder implementations under
different problem sizes, ranging from 128K to 4M elements. Halo size of (a) two and
(b) 12 elements

Pathfinder

Figure 6.2 compares performance of three Pathfinder implementations. We run the

algorithm for a total of 120 iterations. FCW and CUDA use software-managed cache

and implement ghost zone optimization. Ghost zone optimizations create halo regions

around the tile allowing thread blocks to calculate and reuse intermediate results lo-

cally and without global communication. Each bar group reports for a particular

problem size for Pathfinder (128K to 4M). Figure 6.2a and 6.2b report the numbers

for different halo region sizes (different number of local iterations). Under all con-

figurations, the CUDA implementation performs the fastest and OpenACC performs

the slowest, in both kernel execution and kernel launch.

launch. Comparing kernel launch time, FCW performs close to the CUDA ver-

sion and substantially faster than baseline OpenACC (72% to 8.5X). This is because

93

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Ti
m

e

Kernel execution Launch overhead

2M 4M 8M 16M 32M 64M

Figure 6.3: Kernel execution and launch time of three Dyadic Convolution imple-
mentations: CUDA (CUDA), standard OpenACC (OpenACC), and OpenACC+fcw
(FCW). The legend below each group denotes the size of input sequence.

CUDA and fcw implementations launch 2X lower number of kernels than OpenACC

in Figure 6.2a (12 times lower than OpenACC in Figure 6.2b).

kernel. Comparing kernel execution time, FCW performs 16% to 79% faster

than baseline OpenACC. In FCW, intermediate results are read back by threads of

the same thread block, avoiding high number of global memory reads and writes,

compared to OpenACC. Comparing CUDA and FCW, FCW performs 6% to 9%

slower than the CUDA implementation. For each problem size, the gap between

CUDA and FCW kernel execution time narrows down as the number of local itera-

tions grows (comparing the same bar group in Figures 6.2a and 6.2b). This is due to

the fact that our automatically generated SMC code imposes higher overhead than

the hand-developed CUDA version. Increasing the halo region size (or the number

of local iterations) gives rise to the computation body, making the overhead of ini-

tial SMC fetch negligible. Hence, the higher number of local iterations the lower

the performance gap between CUDA and OpenACC. We found that after increasing

the number of local iterations beyond 12, performance improvement saturates. Be-

yond that point, the redundant calculations of halo regions outweigh the performance

advantages of lowering the number of global memory read/writes.

Dyadic Convolution

Figure 6.3 compares performance of OpenACC, CUDA, and OpenACC+fcw under

various problem sizes, 2M to 64M elements per input sequence. As can be seen, CUDA

and OpenACC+fcw perform comparable while OpenACC performs the slowest.

launch. Contribution of kernel launch time in total time is negligible (nearly 2%

94

in 2M data).

kernel. Comparing kernel execution time, FCW performs 34% to 77% faster

than baseline OpenACC. While baseline OpenACC computes the dyadic convolu-

tion directly, CUDA and OpenACC+fcw use Fast Walsch-Hadamard Transformation

(FWHT). FCW and CUDA launch several kernels for transforming the input into

FWHT domain, calculating dyadic convolution in FWHT domain, and transforming

the output back to original domain. Generally, using FWHT algorithm minimizes

irregular memory accesses of dyadic convolution and improves performance.

problem size. As the problem size grows, performance advantages of FCW and

CUDA decrease. We explain this by the algorithmic difference between FCW/CUDA

and OpenACC. Calculation of dyadic convolution in FWHT domain is fairly fast, but

transformations of input sequences is the key bottleneck. CUDA/FCW call FWHT

three times: twice to transform two input sequences and once to transform back the

output sequence. We investigated the breakdown of kernel time and found that the

transformations take 94% of the time. By increasing the problem size, this num-

ber grows to 96%. Transformation is performed in two kernels and only one of the

kernels is optimized to use software-managed cache. The kernel which is optimized

by software-managed cache accounts for 26% of transformation time. Increasing the

problem size to 64M lowers this number to 20%, emphasizing that the other kernel

is the bottleneck under larger problem sizes. Therefore, we can conclude that the

performance advantages of CUDA/FCW is lowered under larger problem sizes due to

the overhead of FWHT transformation algorithm. Further algorithmic optimization

is out of the scope of this work, as we are interested in implementing the same CUDA

algorithm using fcw clause in OpenACC.

N-Body

Figure 6.4 compares OpenACC, OpenACC+fcw, and CUDA implementations of N-

Body under various input sizes.

launch. CUDA performs faster in kernel launch time since OpenACC and Ope-

nACC+fcw launch two kernels. OpenACC implementations calculate the summation

of velocity in one kernel and the new position in another kernel. As we increase the

number of bodies from 512 to 16384, kernel execution time dominates the runtime

breakdown and kernel launch time becomes negligible.

kernel. Comparing kernel execution time, FCW outperforms OpenACC by 31-

95

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Ti
m

e

Kernel execution Launch overhead

32K 64K 128K 256K 512K 1M

Figure 6.4: Kernel execution and launch time of three N-Body implementations:
CUDA (CUDA), standard OpenACC (OpenACC), and OpenACC+fcw (FCW). The
legend below each group denotes the number of bodies.

44%, under different problem sizes. CUDA implementation performs faster than

OpenACC and FCW. CUDA outperforms OpenACC by 44-47% and OpenACC+fcw

by 1-12%.

problem size. As shown in Figure 6.4, increasing the problem size lowers the

performance advantages of FCW the over OpenACC implementation. We explain

this by the difference between occupancies 2. In the particular GPU used in this

study, OpenACC, CUDA, and FCW kernels run with the occupancy of 75%, 75%,

and 38%, respectively. Lower occupancy of FCW becomes a performance degrading

issue under larger problem sizes where there are higher number of thread blocks. In

this case, FCW runs with a lower occupancy compared to the CUDA version since

FCW overestimates the size of required software-managed cache.

Matrix-matrix Multiplication

Figure 6.5 compares the performance of three implementations of matrix multiplica-

tion under various input sizes.

launch. Kernel launch time is comparable under different implementations. Also

increasing the problem size mitigates the contribution of kernel launch time to total

runtime (less than 1%).

kernel. For kernel execution time, same behavior can be seen under different

input sizes. CUDA implementation is the fastest and OpenACC implementation is

the slowest. FCW outperforms OpenACC by 103%. CUDA implementation out-

2Occupancy is the ratio of the number of concurrent active thread blocks to the maximum number
of supported thread blocks per core.

96

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

C
U

D
A

FC
W

O
pe

nA
C

C

0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Ti
m

e

Kernel execution Launch overhead

512x512 1024x1024 2048x2048 4096x4096

Figure 6.5: Performance of OpenACC (OpenACC), OpenACC+fcw (FCW), and
CUDA (CUDA) implementations of matrix multiplication. Each thread in Ope-
nACC version calculates one element in the output and fetches an entire row and
column from global memory. OpenACC+fcw and CUDA compute by fetching rows
and columns in tiles into shared memory.

performs FCW and OpenACC by 53% and 311%, respectively. FCW and CUDA

significantly reduce the global memory traffic, compared to OpenACC. Fetching tiles

of input matrices into SMC, FCW and CUDA implementations maximize memory

access coalescing. Also these implementations exploit the locality among neighbor

threads to minimize redundant memory fetches. Using nvprof, we found that FCW

tiling reduces DRAM access rate by 3.94X (under 1024x1024 matrices), compared to

OpenACC.

Despite the significant improvement of FCW over OpenACC, comparing CUDA

and OpenACC+fcw, we still observe a runtime gap (53%). This gap is due to the

overhead of our current implementation of fcw. Particularly, CUDA implementation

shares a control-flow statement between both tiles of input matrices for fetching the

data. However, in FCW implementation, two separate control-flow statements are

generated for fetching each of input tiles. In our implementation of fcw, we have few

heuristics to identify the opportunities for sharing the control-flow statement of SMC

initialization among multiple fcw clauses. For instance, we share a fetch control-flow

statement among multiple fcw clauses, if the clauses have the equal value on BEFORE

and AFTER in range identifiers. However, in this matrix multiplication example, our

heuristics are not capable of detecting the opportunity for sharing the control-flow

statement. We leave the study for finding more advanced heuristics to future work.

97

Needleman-Wunsch

We investigated the opportunity to implement the CUDA algorithm through fcw

under Needleman-Wunsch. CUDA algorithm uses one dimensional thread blocks to

fetch and writeback a two-dimensional array. Additionally, there is a complex relation

between thread identifiers, global memory locations, and shared memory locations.

These issues prevented us from implementing the CUDA algorithm with the simple

notation of fcw. One possible solution maybe to add a dummy parallel loop in Ope-

nACC to create two-dimensional thread blocks and simplify the indexing. However,

this solution has two drawbacks. Firstly, it sophisticates OpenACC programming.

Secondly, adding a dummy parallel loop increases the number of thread blocks re-

markably and may ruin the performance advantages of SMC.

6.3.2 Development Effort

Table 6.2 compares development effort under fcw compared to baseline OpenACC and

CUDA, in terms of number of lines of code. Since code modifications for implementing

fcw is limited to the kernels region space of code, we only report the number of

lines of code for this code region (not whole the code). Under CUDA, we report

the number of code lines implementing the same operation. Changes are slight in

Pathfinder, Matrix-matrix multiplication, Hotspot, and N-Body and very high in

Dyadic Convolution. The overhead in the first group is low since the modification

is limited to tiling the data around a loop. By tiling the data around a loop we

mean decomposing an iterative loop into two inner and outer loops and applying fcw

directive over the inner loop. The overhead in the Dyadic Convolution is significant

as major algorithmic changes is required.

In Dyadic Convolution, fcw uses fast Walsh-Hadamard transformation which re-

places the single kernel region with three kernels regions, significantly increasing code

modification. Among these three kernels, only one of them exploits software-managed

cache and most of the code is CUDA-like. Implementing the algorithm in fcw demands

higher effort than CUDA. We found that fcw does not have significant advantage in

amortizing the SMC fetch instruction, only saving two lines of code. Besides this,

fcw performs roughly the same amount of instructions as the CUDA version. fcw

code is larger than CUDA as there are single-line directives over the loops to hint

the compiler for launching parallel threads. We conclude that using fcw may not be

justified in terms of development effort in this case. Appendix A explains how we

98

Table 6.2: Comparing development effort of baseline OpenACC, fcw, and CUDA
implementations in terms of the number of code lines.

benchmark baseline fcw CUDA
Pathfinder 18 41 52
Matrix-matrix multiplication 13 23 30
Hotspot 16 42 66
N-Body 15 20 26
Dyadic Convolution 17 132 99

extend Pathfinder, Matrix-matrix multiplication, Hotspot, and N-Body to implement

the fcw version.

6.3.3 Sensitivity to Vector Size

In this Section, we investigate the sensitivity of our findings to variations in the vector

size clause of the loop directive. Since we execute OpenACC applications over CUDA,

we use CUDA terminology to explain the performance impact.

Variations in the vector size impacts the number of communicating loop iterations.

This in effect changes the i) number of threads in a thread block and ii) amount

of CUDA shared memory used by each thread block. Since each GPU core has a

certain capacity in concurrent threads and shared memory per thread block, vector

size variations change the number of concurrent thread blocks per GPU core. This is

often referred to as occupancy.

In Section 6.3.1, we investigated the performance of OpenACC+fcw version of

Pathfinder and Hotspot benchmarks under 256 and 16x16 thread block (or vector)

sizes (notice that vector size in Hotspot is specified by two numbers as Hotspot has two

nested loops). Figure 6.6 presents performance under different thread block sizes. We

evaluated occupancy for all the configurations presented in this figure. Using CUDA

Occupancy Calculator [70], the occupancy of all configurations are 100%, except

Pathfinder with 64 vector size and Hotspot with 32x32 vector size which are 38% and

50%, respectively (the occupancy of baseline OpenACC is also 100% in both cases).

In both benchmarks, very small vector sizes (e.g. 64 in Pathfinder and 8x8 in

Hotspot) perform poor. This is explained by the ghost zone optimization character-

istic which is exploited in both Pathfinder and Hotspot. For a fixed ghost zone size

(which is two in Pathfinder and 12 in Hotspot), small vector sizes increase the over-

head of ghost zone operations. In these cases, the overhead of redundant calculations

99

fc
w

-6
4

fc
w

-1
28

fc
w

-2
56

fc
w

-5
12

no
-fc

w

fc
w

-6
4

fc
w

-1
28

fc
w

-2
56

fc
w

-5
12

no
-fc

w

fc
w

-6
4

fc
w

-1
28

fc
w

-2
56

fc
w

-5
12

no
-fc

w

fc
w

-6
4

fc
w

-1
28

fc
w

-2
56

fc
w

-5
12

no
-fc

w

fc
w

-6
4

fc
w

-1
28

fc
w

-2
56

fc
w

-5
12

no
-fc

w

fc
w

-6
4

fc
w

-1
28

fc
w

-2
56

fc
w

-5
12

no
-fc

w

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
al

iz
ed

Ti
m

e

Kernel execution Launch overhead

128K 256K 512K 1M 2M 4M

(a) Pathfinder.

fc
w

-8
x8

fc
w

-1
6x

16
fc

w
-3

2x
32

no
-fc

w

fc
w

-8
x8

fc
w

-1
6x

16
fc

w
-3

2x
32

no
-fc

w

fc
w

-8
x8

fc
w

-1
6x

16
fc

w
-3

2x
32

no
-fc

w

fc
w

-8
x8

fc
w

-1
6x

16
fc

w
-3

2x
32

no
-fc

w

fc
w

-8
x8

fc
w

-1
6x

16
fc

w
-3

2x
32

no
-fc

w

fc
w

-8
x8

fc
w

-1
6x

16
fc

w
-3

2x
32

no
-fc

w

0
0.5
1.0
1.5
2.0
2.5
3.0

N
or

m
al

iz
ed

Ti
m

e

Kernel execution Launch overhead

128x128 256x256 512x512 1Kx1K 2Kx2K 4Kx4K

(b) Hotspot.

Figure 6.6: Comparing baseline OpenACC (shown with no-fcw label) and Ope-
nACC+fcw, under different vector sizes and problem sizes. (a) Pathfinder: 12 local
iterations and 64, 128, 256, and 512 vector sizes. (b) Hotspot: two local iterations
and 8x8, 16x16, and 32x32 vector sizes.

negates the performance gain of software-managed cache significantly leading to very

poor performance.

Increasing vector size improves performance, as long as occupancy remains intact.

This improvement is caused by the higher efficiency in ghost zone calculation. For

example in Pathfinder, the 256 and 512 vector sizes perform best. We see slight

performance degradation moving from 256 vector size to 512. This is explained by

the higher overhead in thread block synchronization under larger thread blocks. This

degradation is more sensible in Hotspot, moving from 16x16 vector size to 32x32. In

this case, in addition to the synchronization overhead, 32x32 has lower occupancy

which can be a critical issue under larger problem sizes.

100

6.4 Discussion

6.4.1 Programmer or automatic compiler passes

An important question is whether achieving fcw gains through using a new direc-

tive is the most effective approach. In other words is it possible, for example, to

achieve similar benefits by employing an alternative compiler. Our proposed fcw re-

quires programmers to provide information for i) base array pointer, ii) fcw type, and

iii) the data range that every loop iteration accesses. For the compiler to provide

the same benefits, it has to obtain this information automatically. Instead of the

first parameter, array pointer, the compiler can blindly search all arrays, which are

called within the accelerator region, and investigate the potential for data caching in

SMC. The second parameter, fcw type, cannot be decided properly by the compiler.

Under fcw types used here, fcw can make inter-iteration communication possible.

Since the compiler is blind to the algorithm, such communications may harm cor-

rectness. In this situation, the compiler is limited only to assume a safe conservative

yet suboptimal FETCH ONLY type. As for the data range, static compiler passes

may be able to determine this information. This is the case when the data range

identifiers do not depend on any variable with a runtime-dynamic value. We con-

clude that under limited circumstances only FETCH ONLY fcw can be performed

by the compiler, without any information from the programmer. CHANNEL ONLY,

FETCH CHANNEL, CHANNEL WB, and FETCH CHANNEL WB types allow fast

inter-iteration communication, which needs the programmer insight and is unlikely

to be achieved using compiler passes.

6.4.2 Applicability

fcw is applicable in two ways: implicit or explicit. In implicit mode, programmer

relies on FETCH * (fetch) and * WB (writeback) clauses of fcw and allows the com-

piler to implement fetch and writeback in the most efficient way. In explicit mode,

programmer passes an array (it might be even a dummy array) in fcw notation (po-

tentially CHANNEL ONLY type) and relies on the compiler to share intermediate

writes among neighbor iterations via software-managed cache. In this case, program-

mer explicitly fetches the data into SMC or writes the content of SMC back to global

memory, in an arbitrary user-defined pattern. The implicit mode is advantageous in

terms of development effort. The explicit mode is advantageous in terms of applica-

101

bility. In our evaluations, we have examples of both cases. We used the implicit mode

in Hotspot, Pathfinder, N-Body, and Matrix-matrix Multiplication and the explicit

mode in Dyadic Convolution benchmark. We are more interested in implicit mode,

since the abstraction and development effort of this mode matches the requirements

of OpenACC model. Below we discuss limitations of implicit mode.

We use fcw within parallel work-sharing loops. The data range identifiers of fcw

are either constant or varying, in respect to the induction variables of outer contain-

ing parallel loops. If the identifiers are constant in respect to induction variables, all

parallel iterations need the same range of array elements, fully overlapped between

threads. In this case, fcw is applicable if the overlapped range of data fits in the accel-

erator SMC. Otherwise, if the identifiers are varying in respect to induction variables,

parallel iterations potentially demand different array elements. To create a communi-

cation channel among the neighbor parallel iterations, i) neighbor iterations must be

mapped to the threads of the same thread block and ii) specified fcw range must have

an overlap among the threads of the same thread block. Otherwise, neighbor itera-

tions will not be able to communicate, reading intermediate writes of each other. In

summary, in order to have communication between neighbor iterations under fcw the

following conditions should be met: i) the programmer must perform communication

only among neighbor loop iterations, ii) the compiler must map neighbor iterations

to threads of the same thread block, iii) the union of data across neighbor iterations

should be small enough to fit in the accelerator SMC. If necessary, the number of com-

municating loop iterations (or the thread block size) can be adjusted to shrink the

data size and fit the data in SMC. A similar discussion applies to multi-dimensional

arrays marked as fcw.

6.4.3 Implications

Communication thread block size. The programmer may need to control the

communicating thread block size or the number of iterations that share one common

SMC. She can control this number through the OpenACC vector clause of the outer

loop directive. Upon translating OpenACC to CUDA (or OpenCL), the vector clause

determines the thread block size. In nested parallel loops, a vector clause per loop

can be passed to specify the thread block size along each dimension.

Data hazard in SMC and DRAM. Using fcw, the programmer may develop a

code exhibiting SMC write-after-write or write-after-read data hazards. We add the

102

following restriction to fcw definition to protect fcw under such hazards. Using im-

plicit or explicit synchronizations, every write to a CHANNEL ONLY, FETCH CHANNEL,

CHANNEL WB, and FETCH CHANNEL WB fcw location is guaranteed to be syn-

chronized across the iterations falling within the same communicating thread block.

Multiple writes to the same location are allowed and fcw guarantees to store one write.

But the order of writes is not determined (since the threads may execute in an un-

specified order on the accelerator). Similarly, there is a possibility for race conditions

on global memory. This happens if the range identifiers have an overlap across differ-

ent communicating thread blocks for CHANNEL WB and FETCH CHANNEL WB.

We also add the following restriction to fcw definition to protect fcw in such cases.

When there is an overlap between different communicating thread blocks over CHAN-

NEL WB and FETCH CHANNEL WB, one memory write is guaranteed to be stored

in global memory. But the order of writes is not determined.

6.4.4 Difference from the cache directive

The difference between the cache and fcw directive is that fcw is a more general

directive with wider applicability. The fcw directive can fully replace cache directive

and both will have an identical performance. However, the fcw directive can be used

in cases where the cache directive is not applicable, e.g. exploiting SMC as a channel

for communication among iterations.

6.5 Summary

In this chapter, we explained the limitations of the cache directive in exploiting SMC.

We proposed a new OpenACC directive, referred to as fcw, to allow more flexible use

of SMC in OpenACC, nearly close to CUDA programming model. In conjunction

with fcw, we introduce a new communication model in OpenACC allowing neighbor

iterations of parallel loops to communication and share intermediate data. Using

fcw, the OpenACC programmer can fetch a tile of data from DRAM to the software-

managed cache, share intermediate data between iterations, and write the final value

back to global memory. We studied wide set of benchmarks to show the applica-

bility and performance advantages of fcw compared to OpenACC and CUDA. SMC

programming in OpenACC is easier than CUDA for two reasons. First, the shared

memory implementation can be obtained in fewer lines of code. Secondly, the com-

103

piler can automatically inject debugging and verification routines which simplifies

debugging. We showed that fcw can narrow down the gap between OpenACC and

CUDA significantly.

104

Chapter 7

TELEPORT: Hardware/Software

Alternative To CUDA Shared

Memory Programming

Using software-managed cache in CUDA programming provides significant potential

to improve memory efficiency. Employing this feature requires the programmer to

identify data tiles associated with thread blocks and bring them to the cache explic-

itly. Despite the advantages, the development effort required to exploit this feature

can be significant. Our goal in this chapter is to reduce this effort while maintain-

ing the associated benefits. To this end, we first investigate static precalculability in

memory accesses for GPGPU workloads, at the thread block granularity. We show

that a significant share of addresses can be precalculated knowing thread block iden-

tifiers. We build on this observation and introduce TELEPORT. TELEPORT is a

novel hardware/software scheme for delivering performance competitive to software-

managed cache programming, but at no extra development effort. On the software

side, TELEPORT’s static analyzer parses the kernel and finds precalculable mem-

ory accesses. We introduce Runtime API calls to pass this information to hardware.

On the hardware side, this information is used to fetch the data required for each

thread block into shared memory before the thread block starts execution. With this

hardware support, TELEPORT outperforms hand-written CUDA code as a result of

the associated benefits, e.g. DRAM row locality improvement. Investigating a wide

set of benchmarks, we show that TELEPORT improves performance of hand-written

implementations, on average, by 32% while reducing development effort by 2.5X. Our

105

estimations show that the hardware overhead associated with TELEPORT is below

1%.

The remainder of this chapter is organized as follows. In Section 7.1, we overview

TELEPORT’s organization and briefly evaluate its performance and development

effort advantages. In Section 7.2, we show our motivation behind TELEPORT by

investigating static precalculability of memory accesses in GPGPU workloads. In

Section 7.3, we introduce TELEPORT. In Section 7.4, we overview experimental

methodology. In Section 7.5, we investigate the performance and development ef-

fort advantages of TELEPORT. In Section 7.6, we estimate hardware overhead of

TELEPORT. Finally, Section 7.7 summarizes our findings.

7.1 Overview

Programming the software-managed cache in CUDA involves tremendous develop-

ment effort. Firstly, the programmer should identify the data to be fetched into

the cache. Candidate data are the arrays representing high temporal/spatial local-

ity. Secondly, code should be modified to add an extra array explicitly representing

the software-managed cache. To this end, two sets of indexes should be maintained;

global and shared memory spaces.

In this chapter, we introduce TELEPORT, a hardware/software mechanism, to

offload the shared memory development effort from the programmer to the compiler,

while not sacrificing performance. Under TELEPORT, the compiler analyzes CUDA

kernels to statically identify the data tiles assigned to each thread block. Later,

during runtime, hardware loads the designated tiles into the software-managed cache

in advance for each thread block. When both TELEPORT and hand-written CUDA

versions implement similar algorithms, TELEPORT can outperform CUDA versions

via a unique hardware optimization, improving DRAM row locality.

On the software side, we develop a static analyzer to parse the kernel, identify the

candidate arrays, and determine data ranges that each thread block accesses. Extra

procedure calls are introduced to pass this information in an abstract form to GPU.

The procedure calls configure preload table in the hardware, before kernel launch calls.

These steps can be fully integrated into the kernel compilation phase.

On the hardware side, a logical preload table per kernel is maintained. Upon

dispatching a new thread block to GPU core, the thread block dispatcher issues a burst

of memory requests to fetch the thread block’s data, using the information in preload

106

Figure 7.1: Comparing three different implementations of Matrix-matrix Add and
Jacobi iteration. Bars report kernel time and numbers below the bar indicate the
development effort, normalized to Baseline. (Effort is measured in the number of
lines of code.).

table. All threads of the thread block are put on hold till tiles are loaded completely.

Putting the thread block on hold also stops threads from issuing redundant memory

accesses, avoiding the generation of excessive memory bandwidth traffic.

To take a glance at the performance and development effort advantages of TELE-

PORT, we present a subset of out findings in Figure 7.1 where we compare three

different implementations of two benchmarks: matrix-matrix addition (A + B = C)

and Jacobi iterative method (See Section 7.4 for methodology.) The first implemen-

tation (Baseline) does not use the software-managed cache. The second implementa-

tion (Hand-written) employs the software-managed cache. The third implementation

(TELEPORT) analyzes the source code of the Baseline implementation and takes ad-

vantage of the opportunities available for using software-managed cache (notice that

this implementation relies on hardware support.) Below we explain each benchmark.

Matrix-matrix addition. Under Baseline, every thread calculates one element

of the output matrix. While performance is very poor, the development effort is

fairly low. Under Hand-written, threads of every thread block collaboratively fetch

tiles of A and B to the software-managed cache and calculate the sum. This im-

plementation exploits data locality among threads of the thread block and removes

redundant memory fetches within thread block. While performance is very high,

Hand-written implementation demands higher development effort compared to Base-

line (2.25X greater). Under TELEPORT, development effort is similar to Baseline.

During the compile time, the static analyzer parses the Baseline’s kernel to specify

the ranges of A and B that are assigned to each thread block. Finding opportuni-

107

ties for caching A and B, the compiler injects API calls before the kernel launch to

configure the preload table for the kernel. With hardware support, the input tiles

are fed to the thread block during runtime through the software-managed cache. As

reported, TELEPORT outperforms Hand-written by 23%. As we explain later, part

of this improvement comes from lowering the number of dynamic instructions.

Jacobi iterative method. In this benchmark, every thread calculates one ele-

ment in the output by applying the smoothing function over nine elements (8 neigh-

bors plus the element itself). This results in a strong spatial data locality among the

thread input data as threads use adjacent elements to calculate the output. Under

Baseline, threads fetch the elements from global memory separately. This imple-

mentation relies merely on memory access coalescing capabilities of hardware [67].

Hand-written fetches a tile of data, covering the input of all collaborating threads,

into the shared memory. This lowers the global memory load instructions by nearly

9X (for a tile of 16 ∗ 16 threads, Baseline performs 16 ∗ 16 ∗ 9 loads and Hand-written

performs (16 + 1) ∗ (16 + 1) ∗ 1 loads. But not all of this gain translates to speedup,

since Hand-written version needs to access the shared memory for (16 ∗ 16 ∗ 9) ∗ 2

times1.). TELEPORT analyzes Baseline kernel and identifies the input tile associ-

ated with collaborating threads. This, combined with hardware support, lowers the

development effort of Hand-written by 2.88X and improves its performance by 6%.

Later in this chapter we investigate wider set of benchmarks and show TELE-

PORT improves performance of Baseline and Hand-written implementations, on av-

erage, by 56% and 32%, respectively. We also show TELEPORT lowers development

effort by 1.46X to 3.4X, compared to Hand-written. TELEPORT uses the unused

space in the software-managed cache of the GPU core as a buffer for storing tiles.

The hardware overhead associated with TELEPORT includes the preload table and

TELEPORT’s controller unit (which are shared among GPU cores), plus an array of

tags per GPU core for indexing the software-managed cache. Our estimations show

that the hardware overhead is below 1%.

7.2 Motivation

In this Section, we investigate the static precalculability of memory accesses in CUDA

kernels. We limit the analysis to global memory space, since this is the space con-

1Multiplied by 2 to account for one store and one load.

108

Figure 7.2: Example to clarify the static analyzer operations.

tributing to performance the most. We developed a static analyzer parsing one CUDA

for C kernel at a time. For each kernel, the static analyzer performs three phases.

First, the analyzer forms a list of variable names which are listed in the kernel’s ar-

guments as pointer variables. These pointers essentially point to a location in the

global memory. Within the kernel, each pointer is treated as array. Second, for each

of these arrays, the static analyzer extracts the array indexes which are referred to

in the kernel body. Finally, the static analyzer examines static precalculability of the

value of each index. Figure 7.2 clarifies the three phases of our static analyzer. Below

we explain our definition of static precalculability and report the findings of static

analysis under different CUDA kernels2.

7.2.1 Static Precalculability

We classify array indexes into statically precalculable, quasi-static precalculable, and

non-precalculable, based on the static precalculability of the index value. We de-

clare the precalculability of index values based on the operators (add, multiply, shift,

etc.) and terms (variables or constants) forming the index expression. We identify

precalculability in two steps; processing operators and processing terms.

Processing operators. We consider an index as non-precalculable if it is com-

posed of any operator other than addition, subtraction, and multiplication. As we

clarify later, this reduces hardware complexity for address calculations on precalcu-

lable addresses.

Processing terms. If the index is not found non-precalculable in the previous

step, then the analyzer examines the terms of the expression to check precalculability

2Hereafter, by array we refer to every array identified in first phase of static analysis. Also array
index is an array index extracted in the second phase.

109

B
FS

B
K

P

B
P

T

E
D

S

FL
D

FW
L

H
S

P

JA
C

LP
S

M
M

A

M
U

M

N
N

C

N
N

P
TF

R
D

C

S
R

D

0
10
20
30
40
50
60
70
80

In
de

x
in

st
an

ce
s

Indexes

0

5

10

15

20

A
rr

ay
in

st
an

ce
s

Arrays

Figure 7.3: The number of arrays and indexes identified by the static analyzer.

(either statically or quasi-static). The index is statically precalculable, if the terms

have constant values (e.g. a[0] or a[blockDim.x] in CUDA). The index is quasi-static

precalculable, if the memory index term depends on at least one built-in CUDA thread

identifier (threadIdx or blockIdx). Since the thread and thread block identifiers are

known at the time of dispatching the thread block, we refer to this type as quasi-static

precalculable. The index is non-precalculable, if the memory index term depends on

a runtime variable. A runtime variable can be a memory location (e.g. a[b[0]]) or a

control-dependent variable (e.g. a[condition ? 1:0]).

7.2.2 Findings

Here we report static precalculability findings under 16 benchmarks (for methodology

refer to Section 7.4), as measured by our static analyzer. Figure 7.3 reports the num-

ber of unique global memory arrays found in the kernels. These arrays are declared

as pointer variables in the kernel’s arguments. The figure also reports the number of

array indexes found in the kernel3. In the case of multiple kernels in the benchmark

(which is the case for BKP, BPT, NN, RDC, and SRD), we report the summation of

arrays and indexes which are found in each kernel. As shown, the number of arrays

ranges from two (in NNC benchmark) to 15 (in BPT) while the number of array

indexes ranges from two (in HSP) to 71 (in BPT).

Figure 7.4 complements Figure 7.3 and reports the breakdown of array indexes

into statically precalculable, quasi-static precalculable, and non-precalculable. As re-

ported, none of the array indexes are found statically precalculable in the evaluated

3For indexes, we only report memory reads.

110

B
FS

B
K

P

B
P

T

E
D

S

FL
D

FW
L

H
S

P

JA
C

LP
S

M
M

A

M
U

M

N
N

C

N
N

P
TF

R
D

C

S
R

D

0

25%

50%

75%

100%

N
or

m
al

iz
ed

N
um

be
r

of
In

de
xe

s

Statically Prec. Quasi-Static Prec. Non-prec. (Induction)

Non-prec. (Indirect) Non-prec. (Control) Non-prec. (Operator)

Figure 7.4: Breakdown of array indexes into statically precalculable, quasi-static
precalculable, and non-precalculable. Non-precalculable indexes either depend on
induction variable (Induction), another memory load (Indirect), a control statement
(Control), or use a sophisticated operator (Operator).

kernels and a significant portion of array indexes are found quasi-static precalcula-

ble. There are four subcategories of non-precalculable indexes: i) induction variable

dependence, ii) indirect addressing, iii) control dependent, and iv) sophisticated op-

eration. In NNC, NN, and RDC, non-precalculable array indexes depend on a loop

induction variable. While we list them as non-precalculable in the breakdown, they

may also be considered as quasi-static precalculable, if the boundaries of the loop

are precalculable (which is the case for these benchmarks4.) For instance, in NN, 17

non-precalculable array indexes depend on an induction variable, whose range can be

evaluated statically. In BPT and FLD, non-precalculable array indexes depend on a

load from another array. In LPS and MUM, non-precalculable array indexes depend

on control statements. In FWL, non-precalculable array indexes use the AND opera-

tor (&). In BFS, one of the non-precalculable array indexes depends on an induction

variable and the other non-precalculable index depends on a load from another array.

Generally, a large portion of array indexes are found to be quasi-static precal-

culable (up to 100% in many benchmarks). Quasi-static precalculable indexes only

depend on CUDA threadIdx and blockIdx variables which are evaluated at the time

of dispatching the thread block. Hence, during runtime, a range of the data that

each thread block accesses can be precalculated. Hereon we build on this observa-

tion and propose TELEPORT hardware/software scheme to take advantage of the

4Here minimum and maximum values of the induction variables can be obtained from the loop
statements statically. Then we can relax the induction dependency constraint and evaluate the
indexes as quasi-static precalculable as the range of induction variables are evaluated statically.

111

opportunity.

7.3 TELEPORT

7.3.1 Software Side

The software side of TELEPORT includes i) static analyzer (which we described

in Section 7.2) and ii) an API for passing static analysis information from CUDA

applications to GPU hardware, at the kernel launch time. This information is passed

for the array indexes which are marked as precalculable by static analysis. The

information guides the GPU to fetch data chunks required by each thread block,

after dispatching the thread block and before issuing any instruction from individual

threads of the thread block. The API passes the information to the GPU in an

abstract form. Below, we first discuss the essence of information which is needed for

precalculating the demand addresses and introduce the API to pass that information.

Secondly, we present an example to clarify the API usage.

API

If the index is marked as precalculable, static analysis evaluates the array index as

an expression of i) thread identifiers and ii) constant terms. During the peiod of

parsing this expression, we only evaluate thread IDs to determine the index value.

Knowing the thread IDs that belong to each thread block, the compiler statically

specifies the domain of values that index may have within each thread block. The

domain of values of an index is the range between minimum and maximum values that

index may have. Thread blocks have different IDs and, accordingly, the minimum

and maximum varies for each thread block. Since thread block IDs are evaluated

during runtime, the compiler passes the essential information to hardware and allows

hardware to calculate the minimum and maximum at runtime. Below we elaborate

on the essential information that has to be passed to hardware.

In order to determine the data chunk of each thread block, the static analyzer looks

for the minimum and maximum value of the array index for each thread block. The

compiler evaluates the index expression to specify its minimum and maximum values

based on the fact that in CUDA there are four three-dimensional thread identifier

variables: gridDim, blockDim, blockIdx, and threadIdx. The index expression can be

reduced to only one variable (blockIdx) provided that: i) gridDim and blockDim are

112

constant terms within a particular kernel and can be evaluated as a constant value, ii)

Lowest and highest values of threadIdx are constant, and iii) blockIdx is determined

at runtime upon dispatching the thread block

Applying the above assumptions to any precalculable array index (statically pre-

calculable or quasi-static precalculable) simplifies the index to an expression of con-

stant values and only one runtime variable (blockIdx). In general, precalculable array

index expression can be presented in the polynomial form of Equation 7.1.

v = a0 +
n∑

i=1

(ai × bIdxi) (7.1)

where ai for 0 ≤ ai ≤ n are life-time constant terms, bIdx is blockIdx, and n is the

degree of polynomial. If an array index is constant (or statically precalculable) then

ai for 1 ≤ ai ≤ n is zero. An array index is affine constraint of degree one if ai for

2 ≤ ai ≤ n is zero. Similarly, array indexes with affine constraint of higher degrees

are possible. To simplify API and hardware support, here we limit TELEPORT

to arrays having indexes with affine constrains of degrees one or lower (the degree

of array index can be identified by the static analyzer by simply searching for the

number of blockIdx variables that are multiplied. In the evaluated benchmarks, we

found all quasi-static precalculable in the first degree or linear polynomial.)

For every precalculable array index, the static analyzer finds a0 and a1 by pars-

ing the dependency graph. It returns the pair of a0 and a1 to specify minimum and

maximum values of index, based on varying values of threadIdx. Then, the proposed

API passes two (a0, a1) pairs, one for the minimum and the other for the maxi-

mum, to guide the GPU in specifying the lowest and highest values of the thread

block’s data. On the hardware side, this information is used to dynamically calcu-

late the minimum and maximum values of indexes, provided that the value of the

last unevaluated variable, blockIdx, is known at the time of dispatching the thread

block. Minimum/maximum point to the beginning/end of the range of addresses

that threads of thread blocks may request. After calculating the range of address,

the hardware sends a burst of read requests to the memory controller. This fetches

the entire range into a buffer on the GPU core that the thread block is dispatched

to. The core starts issuing instructions from this thread block as soon as the entire

range is fetched.

The proposed API prototype is shown in Listing 7.1. This procedure sets registers

on the GPU before kernel launch and simplifies calculating the address of continuous

113

Listing 7.1: Proposed API for passing per- thread block preload information.

host cudaError t
cudaSetCTATracker(void ∗baseptr, size t typesize,
unsigned int minbidxp, unsigned int minbidyp,
unsigned int minbidzp, unsigned int minoffset ,
unsigned int maxbidxp, unsigned int maxbidyp,
unsigned int maxbidzp, unsigned int maxoffset);

data chunk of each thread block required by TELEPORT. TELEPORT controller

unit then calculates the range of data using the following linear equations:

min = baseptr + typesize× (blockIdx.x×minbidxp

+blockIdx.y ×minbidyp

+blockIdx.z ×minbidzp+minoffset)

(7.2)

max = baseptr + typesize× (blockIdx.x×maxbidxp

+blockIdx.y ×maxbidyp

+blockIdx.z ×maxbidzp+maxoffset)

(7.3)

Example

In this section, we explain the mechanism of passing information from the static

analyzer to the GPU via runtime API. We overview a test case; BFS benchmark.

Listing 7.2 presents the kernel of BFS in CUDA, as available in Rodinia [13]. The

static analyzer lists the following procedure arguments (or global memory pointers)

as candidates for loading early: nodes, edges, mask, visited, cost, and over. It parses

the kernel body and extracts all array reads from these arrays. Table 7.1 shows the

list of identified read accesses. The first and second columns list array names and

the corresponding lines of the code in Listing 7.2, respectively. The third column

reports the index expression of the array access. Based on the terms and operators

composing the expression, the fourth column reports whether the index is precalcula-

ble or not. 5 of 7 indexes are marked as precalculable. Two array accesses are found

non-precalculable since static analysis is unable to simplify the index expression to

only thread identifiers and constant values, e.g. line #14. For precalculable array

indexes, static analysis extracts the minimum and maximum possible values of the

114

Listing 7.2: CUDA kernel in BFS.

1 global void
2 Kernel(Node∗ nodes,
3 int∗ edges, bool∗ mask,
4 bool∗ visited , int∗ cost ,
5 bool∗ over, int no of nodes)
6 {
7 int tid = blockIdx.x∗blockDim.x + threadIdx.x;
8 if (tid<no of nodes && mask[tid]){
9 mask[tid]=false;

10 visited [tid]=true;
11 for(int i=nodes[tid]. starting ;
12 i<(nodes[tid].no of edges+nodes[tid]. starting) ;
13 i++){
14 int id = edges[i];
15 if (! visited [id]){
16 cost [id]=cost[tid]+1;
17 mask[id]=true;
18 ∗over=true;
19 }
20 }
21 }
22 }

index. This returns the minimum and maximum, if the index expression is an affine

expression of degree one.

There are three unique precalculable array indexes in this example which are eval-

uated to single common index expression. According to the terminology of Equation

7.1, blockIdx.x is bIdxi, blockDim.x is a1, and threadIdx.x is a0 in this expression.

Replacing minimum and maximum values of threadIdx.x in the expression returns

the minimum and maximum values of the index expression. Minimum and maximum

values of threadIdx.x are 0 and blockDim.x − 1, respectively. This information is

passed to GPU through cudaSetCTATracker API calls, one call per unique index.

Listing 7.3 shows the cudaSetCTATracker calls passing static analysis information

to the GPU just before the kernel launch. cudaFlushCTATracker informs the GPU to

flush and clear prior information of the CUDA stream on preload table, indicating a

new kernel is about to be launched. Subsequent cudaSetCTATracker invocations pass

loading information for one continuous data chunk at a time. In Listing 7.3, there are

115

Table 7.1: Output of static analysis determining the precalculable array indexes, affine
index expressions of degree one, and the minimum and maximum value of index.

min/max
Array
name

Line#
Extracted index

expression
Index
Status

a1 (multiplier) a0 (offset)

mask 8
(blockIdx.x*
blockDim.x)
+threadIdx.x

precalculable blockDim.x 0/blockDim.x
nodes 11
nodes 12
nodes 12
cost 16
edges 14 i Induction - -
visited 15 edges[i] Indirect - -

Listing 7.3: API calls for passing static analysis information to GPU.

1 cudaFlushCTATracker();
2 cudaSetCTATracker((void∗)mask, sizeof(bool),
3 threads.x, 0, 0, 0, // MIN
4 threads.x, 0, 0, threads.x); // MAX
5 cudaSetCTATracker((void∗)nodes, sizeof(Node),
6 threads.x, 0, 0, 0, // MIN
7 threads.x, 0, 0, threads.x); // MAX
8 cudaSetCTATracker((void∗)cost, sizeof(int),
9 threads.x, 0, 0, 0, // MIN

10 threads.x, 0, 0, threads.x); // MAX
11 Kernel<<< grid, threads, 0 >>>(nodes,
12 edges, mask, visited ,
13 cost , over, no of nodes);

three cudaSetCTATracker calls to specify the data region for mask, nodes, and cost.

For each call, the first argument specifies the base address of the array. The second

argument passes the size of each array element in bytes. Next eight arguments pass

blockIdx products and offsets so the GPU can calculate the minimum and maximum

addresses for each thread block at runtime. As stated earlier, the GPU calculates the

minimum and maximum addresses using Equation 7.2 and 7.3.

7.3.2 Hardware Side

Below we explain hardware modifications of TELEPORT.

116

Preload table

The proposed API calls allow the compiler (or optionally the programmer) to pass

the preload information to hardware. Hardware uses this information to dynamically

load the data regions associated with each thread block. To maintain this information

in the hardware, we propose enhancing thread block dispatching unit with a table;

refers to as preload table. Each row of preload table stores the information passed by

a single API call. Each row registers base pointer, data type size, minimum products,

and maximum products.

TELEPORT controller unit

The proposed controller unit is shared among all thread blocks and resides in the

thread block dispatching unit. This unit reads every valid row of preload table to

load the data region associated with the ready-for-dispatch thread blocks. Upon

dispatching every thread block, the controller reads each row of the preload table,

calculates the boundary of data region of the row using Eq. 3 and 4, and issues

a burst of requests per row to load the data region. Requests are issued from the

thread block dispatcher unit to the memory controllers. In each request, the controller

attaches the network address of the target GPU core (the core on which the thread

block is dispatched) as the destination. This allows the network to route the reply

packets from DRAM directly to the target core. On the core, the loaded data is

stored in buffer.

Data buffer

TELEPORT extends GPU cores with a logical buffer to store the data loaded via

the TELEPORT controller unit. The buffer stores the loaded data for outstanding

thread blocks of the core. The buffer is also responsible to count the number of

received packets for each newly scheduled yet-stalled thread block and signal the

warp scheduler to activate the thread block once all the packets from the TELEPORT

controller unit are received at the core’s end. Physically, this buffer can be a dedicated

cache or any of the already available caches on the core (e.g. data cache or software-

managed cache). In this work, we use the unused space of the existing CUDA shared

memory as the buffer. An extra tag array is maintained along the shared memory

to create a set-associative cache out of shared memory. The LRU cache replacement

117

Table 7.2: GPGPU-sim configurations for modeling GTX 480.

GPU chip
GPU cores 15
Memory controllers 6
Sub partition / memory controller 2

GPU core
L1 Cache 16KB, 32 sets, 4-way
Shared Memory 48KB, 32 banks
of Threads 1536
Maximum concurrent thread blocks 8
of registers 32768 32-bit

L2 Cache / sub partition
Size 64KB, 64 sets, 8-way

policy is used when needed5.

Load Concurrency

There might be few instructions ready to execute between the time that it takes

for TELEPORT to load the entire thread block’s data and when a thread actually

demands the data. The GPU core can execute these instructions (in parallel to

the pending memory requests issued by TELEPORT’s controller unit) and hide the

TELEPORT’s loading delay. However, since overlapping the thread block progress

and TELEPORT’s loading increases the hardware complexity, we decided to simply

stall the entire thread block until loading is completed.

7.4 Experimental Methodology

Modeling TELEPORT. We develop a static analyzer that highlights precalcula-

ble array indexes. While this can be accomplished automatically by the compiler,

currently we manually reform this information to the proposed API calls and inject

them to the benchmarks’ source code. We use GPGPU-sim 3.2.2 [7] for modeling

both hardware and software sides of TELEPORT. We model a hardware similar to

NVIDIA GTX 480 as the baseline GPU of this study [69]. Simulation details are

listed in Table 7.2.

5We leave investigation of alternative replacement policies to future work.

118

Benchmarks. We used 16 benchmarks from Rodinia [13], GPGPU-sim [7], NVI-

DIA GPU Computing SDK [68], and three third-party applications (edge-detection

by sobel filter (EDS), Jacobi iteration (JAC), and matrix-matrix add (MMA)) in this

work. We selected these 16 benchmarks as they are not merely compute-bounded

and show tangible performance improvement under the ideal zero-latency memory

machine. We model an ideal machine by assuming a perfect L1 cache which has a hit

rate of 100%.

Evaluations. We measure performance in execution time (clock cycles) when

comparing different implementations of the same benchmark (whenever different im-

plementations come with unequal number of instructions.) Otherwise, we use IPC

(instructions per cycle) as the performance metric. We assume a 64-entry preload

table and a 48KB 96-way associative cache tag for TELEPORT, unless stated other-

wise.

7.5 Experimental Results

We investigate performance and development effort advantages of TELEPORT, com-

paring three implementations of the benchmarks (comparing TELEPORT to two

other implementations):

• Baseline: This implementation does not use software-managed cache. This

should be prone to inefficient memory accesses.

• Hand-written: This implementation exploits software-managed cache to mini-

mize off-chip memory accesses.

• TELEPORT: Built on top of Baseline, static analyzer parses the kernel and

extracts precalculable array accesses. Using this information, cudaSetCTA-

Tracker() calls are injected before the kernel launch call to set preload table in

hardware.

Since evaluating each benchmark requires excessive amount of development effort

to develop a Hand-written implementation, here we limit the evaluations to subset

of the benchmarks. We limit our study to five benchmarks with extensive use of

software-managed cache: EDS, HSP, JAC, MMA, and PTF benchmarks.

The rest of this section is organized as follows. In Section 7.5.1, we present

performance improvements and development effort savings under TELEPORT. In

119

Table 7.3: Comparing development effort of TELEPORT to Hand-written shared
memory version. Development effort is measured in code lines.

TELEPORT Hand-written Improvement
EDS 13 19 1.46
HPS 21 51 2.43
JAC 8 23 2.88
MMA 4 9 2.25
PTF 10 34 3.4

Section 7.5.2, we investigate impacts on DRAM row locality and accesses. In Section

7.5.3, we discuss interactions between TELEPORT hardware and software.

7.5.1 Performance & Development Effort

Table 7.3 compares development effort of TELEPORT to Hand-written. We measure

development effort in code lines. As reported, development effort improvements range

from 1.46X to 3.4X. Below, we investigate the performance aspect.

Figure 7.5 compares execution time of these benchmarks under Baseline, Hand-

written, and TELEPORT implementations. Baseline and TELEPORT execute the

exact same kernel code. The number below the bar group reports the ratio of dynamic

instructions saved by Baseline and TELEPORT, compared to Hand-written.

As shown, the proposed approach consistently improves performance compared to

Baseline. This improvement is minor under PTF and significant in other benchmarks.

Generally, TELEPORT has four performance advantages over Hand-written im-

plementation. Firstly, it executes less number of dynamic instructions, since TELE-

PORT controller unit removes explicit read/writes from the shared memory space.

Secondly, the controller unit issues the burst of memory requests in advance, effec-

tively lowering average memory access latency. Thirdly, the controller unit issues

requests for the same DRAM row back-to-back, potentially improving DRAM row

locality. Finally, TELEPORT delivers higher GPU core occupancy (compared to

Hand-written), since it does not demand allocating shared memory space statically

(unlike Hand-written). Below we discuss each benchmark specifically.

Under EDS, TELEPORT outperforms both Baseline and Hand-written. Most of

the speedup comes from memory latency improvements. The input data for the entire

thread block are fetched altogether, adequately earlier than the real demand. We

120

Figure 7.5: Comparing performance of TELEPORT to Baseline and Hand-written
versions. The numbers below the bar group show the ratio of dynamic instructions
under Hand-written over TELEPORT.

found that DRAM row locality of TELEPORT is 1.9X and 2.7X greater than Hand-

written and Baseline, respectively. Meanwhile, Hand-written executes lower dynamic

instructions that TELEPORT. This might seem ironic since Hand-written executes

more load/stores from/to shared memory. This is explained by observing the kernel

code of these two implementations. Comparing kernel code of TELEPORT (and also

Baseline) to Hand-written, the latter removes large number of logical and control-

flow instructions (Hand-written returns dark pixel from shared memory, instead of

checking the boundary and assuring the index falls within the range of the tile in global

memory, as Baseline and TELEPORT do). Baseline, Hand-written, and TELEPORT

have the same occupancy in this case, 100%.

Under HSP, each thread block reads two 2D input tiles and writes one 2D output

tile. Hand-written performs slower than other implementations as its occupancy is

fairly low (50%), limited by the thread block registers usage. Compiler uses extra reg-

isters for loading/storing from/to shared memory. Also TELEPORT has advantages

in executing lower dynamic instructions than Hand-written (by 2.17X).

Under JAC, TELEPORT delivers 2.2X speedup over Baseline. TELEPORT also

outperforms Hand-written by 6% for executing 1.98X lower dynamic instructions.

Baseline, Hand-written, and TELEPORT have the same occupancy in this case, 100%.

Under MMA, Hand-written and TELEPORT both improve the efficiency of mem-

ory accesses using software-managed cache. Comparing these two, Hand-written exe-

cutes 50% more dynamic instructions. Although these extra instruction only involve

two loads from shared memory and two stores to shared memory, this degrades perfor-

121

mance by a significant amount since the instruction sequence of threads is relatively

short. Baseline, Hand-written, and TELEPORT have the same occupancy in this

case, 100%.

Under PTF, Baseline and TELEPORT perform close. Hand-written improves

performance of Baseline through algorithmic modifications. PTF is 1D stencil kernel

iterating for 36 times. Hand-written reduces the total number of iterations through

ghost zone optimizations [59]. This amortizes several operations in one kernel launch,

which significantly improves performance. Baseline, Hand-written, and TELEPORT

have the same occupancy in this case, 100%.

7.5.2 DRAM Row Locality & Accesses

The TELEPORT controller unit generates a burst of memory requests for a contiguous

data region. This traffic pattern can improve DRAM row locality by mitigating

row changes. However, this will not necessarily turn into a faster DRAM, since

TELEPORT may simultaneously increase the total number of memory requests. This

is the case when i) the percentage of memory accesses covered by TELEPORT is low

or ii) the controller unit loads the entire data range while the thread block sparsely

accesses the data. Generally, to have a faster DRAM with TELEPORT, we aim to

i) keep memory demand as low as the baseline and ii) deliver high row locality at

DRAM. Below we inspect these aspects of TELEPORT.

Figure 7.6 presents the total number of DRAM accesses under three implementa-

tions. As reported, TELEPORT total accesses are approximately equal to Baseline,

for up to 2% more than Baseline (under JAC). In JAC, TELEPORT loads two extra

rows and two extra columns for each tile to cover boundaries. Although all the data

is not required by the threads, this covers all input data that thread block demands.

The extra data fetches increase DRAM requests under TELEPORT by 2%, compared

to Baseline. Hand-written version significantly reduces DRAM accesses under HSP

and PTF. In these cases, Hand-written version applies ghost zone optimizations [59]

to consolidate several kernels in one kernel, reducing global reads and writes.

Figure 7.7 reports the average DRAM row locality under three implementations.

Average DRAM row locality is defined as the ratio of total row accesses to total row

changes. As shown, TELEPORT generally improves DRAM row locality by reducing

row changes. To reduce row changes, we use the following two techniques in hardware.

First, the controller unit issues requests from single data region (or single entry of

122

Figure 7.6: Comparing total DRAM accesses of Baseline, Hand-written, and TELE-
PORT implementations.

preload table or cudaSetCTATracker() call) back-to-back, avoiding early interleaving.

Second, the memory controller prioritizes the controller unit requests over the requests

coming from GPU cores. As reported, the combination of these two techniques lowers

DRAM row changes by up to 4.84X. The only exception is PTF benchmark where

TELEPORT degrades the row locality of Baseline. Unlike other benchmarks, PTF

works on one dimensional arrays. TELEPORT fetches two input arrays into software-

managed cache at the begining. One array is used at the begining and the other array

is used at the end. Baseline fetches the array on demand and the locality among

concurrent thread blocks improves DRAM locality. Under TELEPORT, however,

the fetch process of the first array is interleaved with the fetch of the second array.

This increases row changes and degrades DRAM row locality. One solution to this

issue is to avoid fetching the second array to software-managed cache. In general,

TELEPORT can be tuned (preferably automatically) to only include the arrays that

do not incur extra row changes. Various aspects of the kernel should be inspected to

identify these arrays, namely the kernel size, the location of array in the kernel (e.g.

early at the begining or in the end) etc. We leave the study of adaptive TELEPORT

to future work.

123

Figure 7.7: Comparing average DRAM row locality of Baseline, Hand-written, and
TELEPORT implementations.

7.5.3 Hardware-Software Interactions

While TELEPORT hardware and software are closely coupled, this is interesting to

investigate interactions between hardware and software and specify how much gain

is pertained to either side. One way to approach this problem is to tune hardware

and software configurations and evaluate how these changes would impact the overall

performance.

On the software side, TELEPORT can be tuned for the best performance by

adjusting the cudaSetCTATracker calls. Adjustments include optimizing the number

of calls to cudaFlushCTATracker and tunning the range of data to be fetched by

each of the calls. In either case, adjustments alter the memory demand imposed by

TELEPORT. This accordingly impacts the pressure on global memory bandwidth

and preload buffers. These adjustments can be done manually by the programmer

or, preferably, by compiler heuristics.

On the hardware side, TELEPORT can be tuned for the best performance by ad-

justing i) thread block concurrency and ii) DRAM scheduling policy. As we discussed

earlier, we evaluated a version of TELEPORT that i) stalls thread blocks until all

data is loaded into the buffer and ii) always assigns higher priority to TELEPORT

requests upon DRAM scheduling. An alternative thread block concurrency policy

is to interleave thread block execution with the TELEPORT loading data into the

buffer. An alternative DRAM scheduling policy is to assign equal priorities to all

types of memory requests.

124

7.6 Hardware Complexity

We used CACTI 6.5 [62] in 40 nm to estimate the size of cache tag arrays and global

preload table. We estimated the area of a 4-set 96-way tag array to be 0.009 mm2.

Multiplying this number by GPU cores, the total area overhead of cache tag arrays

is 0.136 mm2 (15 ∗ 0.009). Assuming 21 bytes per entry for preload table (1-byte

for datatype size, 4-byte for pointer, 8X 2-byte for min/max product/offsets) and 64

entries per table, preload table’s size is nearly 1344 bytes. Using CACTI, we found

the area of preload table 0.004 mm2.

Also TELEPORT controller unit needs 6 16-bit integer multipliers and 6 16-bit

integer adders to calculate minimum and maximum range of data for one thread block

in single cycle. Using high-performance ALUs proposed by [58], each ALU occupies

0.071 mm2 in 90 nm. This ALU occupies roughly 0.0144 mm2 in 40 nm, scaled with

0.198 ((
40nm

90nm
)2) scaling factor. Assuming 12 ALUs of this kind, the controller unit

area is 0.173 mm2.

Compared to GTX480 die size (529 mm2), preload table, cache tag arrays, and

the controller unit impose less than 1% overhead.

7.7 Summary

CUDA programmers exploit shared memory space to reduce off-core traffic. Although

shared memory may deliver huge performance improvement, it imposes significant

development effort. We proposed TELEPORT as a hardware/software scheme for

addressing performance and productivity in GPGPUs. TELEPORT is motivated by

our observation on the precalculability of memory accesses in CUDA kernels. We

presented our motivation that a large share of memory accesses in CUDA kernels is

statically precalculable, at the thread block granularity. This means that data tiles

assigned to thread blocks can be exactly determined by knowing thread block iden-

tifiers. On average, and compared to hand-written programs, TELEPORT improves

performance by 32% and lowers development effort by 2.5X.

125

Chapter 8

Related Work

8.1 OpenACC

It is highly desirable to maximize the performance of GPUs while minimizing the

development effort. This fact drove the rise of high-level programming models for

GPUs [24, 9, 48, 6, 25]. In 2011, OpenACC programming API integrated features

from these high-level programming models and introduced an standard for directive-

based accelerator programming [75]. In OpenACC programming model, programmers

can take advantage of GPUs (and, accelerators in general) by adding few directives to

the existing serial C/Fortran code. There are three advantages in using OpenACC: i)

saving a huge development efforts for porting applications to accelerators, ii) applying

a wide range of optimization techniques automatically at the compile time, and iii)

maintaining code portability across various accelerators.

Reyes et al. [81] introduce an open-source tool, named accULL, to execute Ope-

nACC applications on accelerators. The tool consists of a source to source compiler

and a runtime library. The compiler translates OpenACC notations to the run-

time library routines. The runtime library routines are implemented in both CUDA

and OpenCL. Tian et al. [91] introduce an OpenACC implementation integrated in

OpenUH [51]. They evaluate the impact of mapping loop iterations over GPU paral-

lel work-items. Lee and Vetter [49] introduce a framework for compiling, debugging,

and profiling OpenACC applications.

Hoshino et al. [28] investigate the impact of memory layout on the performance

of NVIDIA Kepler, Intel XeonPhi, and Intel Xeon processors, under directive-based

programming languages. They found that having structure-of-arrays is much more

126

efficient than array-of-structures under Kepler and XeonPhi, while it has minor im-

pact on the performance of Xeon. They explain this by relatively smaller cache of

Kepler (110 Bytes per hardware thread) and XeonPhi (128 KBytes per hardware

thread), compared to Xeon (1048 KBytes per hardware thread). They also introduce

a new directive allowing programmer to change the data layout of multi-dimensional

arrays.

Herdman et al. [27] compare performance of parallel and kernels constructs under

various vendor implementations of OpenACC. They found that most vendors focus

on one of these constructs. Comparing quickest construct of the vendors, their perfor-

mance variations found to be below 13%. They also found 15% to 20% gap between

OpenACC and CUDA on NVIDIA GPUs.

Nakao et al. [63] introduce XACC as an alternative to MPI+OpenACC program-

ming model to harness the processing power of cluster of accelerators. XACC offers

higher productivity since XACC abstractions reduce the programming efforts. Un-

der small and medium problem sizes, XACC performs up to 2.7 times faster than

MPI+OpenACC. This higher performance comes from the PEACH2 interface that

XACC communicates through. PEACH2 performs faster than GPUDirect RDMA

over InfiniBand under data transfer size of below 256KB. Increasing the problem

size, XACC and MPI+OpenACC perform comparable, since the latency of PEACH2

and GPUDirect RDMA over InfiniBand would be equal.

Murai et al. [61] propose an extension to OpenACC to facilitate multi-accelerator

processing. Language extension includes on device clause for data, kernels, and loop

directives.

Xu et al. [101] evaluate the performance of Kirchhof Migration under OpenACC.

They found OpenACC code executed on the GPU is 20.54X faster than the code

executed on single 10-core CPU. They also found that gang serialization may degrade

performance significantly. Instead of serialization and broadcast, they suggest to

perform the computations redundantly.

Kraus et al. [33] investigated the opportunity to improve the performance of CFD

workloads through OpenACC. They applied several CUDA-like optimizations at the

OpenACC level, including texture cache and occupancy optimizations. They apply

texture memory optimization by declaring variables as constant. They alter the

streaming multiprocessor’s occupancy by specifying vector length (or thread-block

size). They found that the optimal occupancy is the point with higher cache hit rate,

since the CFD workloads tend to work on large working sets. They also transform

127

array-of-structures to structure-of-arrays to optimize memory layout (returned nearly

52% performance improvement).

Govett et al. [23] compare the performance three different OpenACC implemen-

tations under NIM workload. They perform three optimizations in their own imple-

mentation, called F2C-ACC. Among these optimizations, they found that variable

demotion technique can improve performance significantly. Variable demotion avoid

transfer of entire dimension of array when only certain indecies are accessed. This can

decrease the memory transfer time and also allow generation of more efficient kernel

code. For instance, variable demotion on a 1D array, where possible, can replace

global memory array accesses with scalar or register accesses.

Wienke et al. [97] compare the performance and development cost of two Ope-

nACC applications to their OpenCL equivalent. In terms of modified code lines,

they found OpenACC demands 6.5X lower development effort compared to OpenCL.

Meanwhile, they found the best-effort performance gap is of 2.5X. They observed that

the OpenACC inflexibility in exploiting software-managed cache causes this large per-

formance gap. Williams et al. [98] study different applications to evaluate the per-

formance gap between OpenACC and CUDA implementations. Niemeyer and Sung

[65] investigate the OpenACC and CUDA performance in CFD applications. They

show that the performance gap between OpenACC and CUDA narrows down to a

negligible value for large data sets. Herdman et al. [27] compare the performance

and programming productivity of OpenACC, OpenCL, and CUDA. Under hydorody-

namics applications, they found that OpenACC outperforms CUDA and OpenCL on

average by 1.35X and 1.24X, respectively. In terms of words of code, they conclude

OpenACC applications are 11.9X and 8.67X more productive for programming than

OpenCL and CUDA, respectively. Additionally, they found OpenACC applications

easier to debug and verify, compared to CUDA and OpenCL.

8.2 GPU Micro-benchmarking

Wong et al. [100] introduced a set of micro-benchmarks, revealing wide set of micro-

architectural details on NVIDIA GTX280 GPU, including the latency and throughput

of different instructions and cache hierarchy of different memory spaces. They also

investigated the behavior of intra- thread block synchronization and intra-warp branch

divergence.

Zhang et al. [104] developed a set of micro-benchmarks to understand the impact

128

of VLIW utilization on the power consumption of ATI GPUs. They found that

increasing VLIW utilization from 20% to 100% can increase the power consumption

by nearly 33%.

Anderson et al. [4] used micro-benchmarking to understand shared memory, global

memory, and intra- thread block synchronization in NVIDIA Fermi architecture.

They found that the achievable bandwidth of shared memory is 85.4% and global

memory is 75%. They also found that the latency of shared memory and global

memory are 27 and 570 cycles, respectively. They showed that address calculation

overhead in Fermi architecture significantly increases the shared memory access time,

while the address calculation overhead is negligible for global memory accesses. They

also presented that the latency of intra- thread block synchronization depends heavily

on the thread block size, if the thread block size is below 256 threads.

Aji et al. [1] developed a set of micro-benchmarking to investigate the performance

impact of partition camping, contention of memory requests on the same memory

controller, under NVIDIA GTX 280. They found that partition camping may degrade

performance by 7X. They same micro-benchmark cannot be used under the GPUs

with L1 or L2 cache, since the redundant traffic injected by the micro-benchmark

would be captured by the cache.

8.3 Software-Managed Cache for GPUs

Li et al [50] compare the performance of software-managed and hardware-managed

caches in NVIDIA GPUs. They study several test cases and compare two CUDA

implementations. The first implementation uses shared memory and the second im-

plementation tiles the computation and allows hardware-managed cache to store the

tiles implicitly. They found three advantages in using software-managed cache. First,

shared memory has higher bandwidth and less serialization compared to hardware-

managed cache. This can be explained by the multi-banked design of shared mem-

ory. Second, software-managed implementation has much higher memory-level par-

allelism, fetching all the data before the real request. Third, the programmer can

use shared memory to avoid conflict miss and low associativity problems which may

harm performance in hardware-managed caches. On the other hand, they also found

two advantages in using the hardware-managed cache. First, it executes lower num-

ber of dynamic instructions, since the software-managed cache version has extra op-

erations for interchanging data between shared memory and register file. Second,

129

hardware-managed cache implementation may have higher occupancy since the num-

ber of thread blocks per SM may not be limited by the shared memory usage.

Fang et al. [17] proposed ELMO APIs to lower OpenCL development effort in

utilizing local memory. They explained challenges in introducing a high-level API for

local memory fetch, writeback, and communication. They also investigated perfor-

mance of various implementation alternatives. They found 1.3X to 3.7X performance

improvement over the baseline (without local memory). They do not report develop-

ment effort advantages over hand-written version.

CUDA programmers control threads of thread blocks to optimize both data and

computation patterns. This can fail under scenarios where optimizing data and com-

putation patterns simultaneously is not possible. CudaDMA API [8] aims to improve

both performance and productivity by decoupling data and computation patterns.

CudaDMA allows splitting thread block into compute and DMA warps. DMA warps

manage the movement of data between shared memory and DRAM and compute

warps are responsible for computation.

Lee and Vetter [49] introduce openarc directive to allow OpenACC programmer to

map OpenACC arrays to CUDA memory spaces, including shared and texture mem-

ory spaces. They do not investigate the effectiveness of their proposal for these map-

pings. Based on the short introduction that they present, we believe their proposal

for utilizing shared memory is different from our fcw directive in two ways. Firstly,

while the openarc directive needs programmer to separate shared memory array and

corresponding global memory array in the code, the fcw directive separates the ar-

rays automatically, based on the information presented by the programmer. Secondly,

while the openarc directive allows fine-grained control to OpenACC programmer to

perform fetch, synchronization, and writeback, fcw directive handles these operations

implicitly. Based on these differences, we consider the fcw directive as a high-level

proposal for utilizing SMC and openarc as a low-level fine-grained control over SMC.

OpenACC provides the tile clause and cache directive to hint the compiler on

using software-managed caches. As follows we discuss the capabilities and limitations

of these clauses in exploiting them as shared memory of CUDA (or local memory

of OpenCL). The tile is a clause used by loop directive to split the loop into two

loops; outer and inner. This clause is intended to specify a boundary for splitting

the loop calculations over different gangs. Programmers do not contribute to tiling

adjustments as the compiler carries the necessary tiling optimizations. Although this

clause introduces the tiling concept of CUDA/OpenCL in OpenACC programming

130

model, there are still two limitations in employing it for utilizing SMC effectively.

First, unlike CUDA/OpenCL, the tile does not provide enough information to allow

the compiler exploit the software-managed cache as an inter-thread communication

medium. Second, developers cannot control the software-managed cache at the pro-

gramming level via this clause. The tile directive improves the locality of accesses and

assists the accelerator in fitting the working set of gangs in the small-sized automatic

hardware cache. The cache directive can be used within work-sharing loops to fetch

a memory region into the highest level of accelerator’s cache hierarchy. It can mark

a subset of array elements to exploit locality efficiently. Although the compiler can

use this hint to reduce costly global memory accesses, there are opportunities that

cannot be captured by the cache directive. For example, as we have shown in Chapter

6, communication between neighbor iterations of a work-sharing loop, similar to the

communication across the threads within a CUDA thread block, is not possible under

the cache directive. Sharing intermediate memory writes among neighbor iterations

can reduce global memory communications significantly. In summary, the tile clause

and cache directive do not allow communication through SMC and they can be con-

sidered as a specific type of fcw directive, FETCH ONLY. A previous work [28] also

found the same limitation in the cache directive.

8.4 Prefetching

Cache fetch algorithms are either demand fetch or prefetch methods [87]. Demand

requests are actual memory requests needed by the application. Prefetch requests

speculate actual accesses and load them into the cache in advance. Prefetching mech-

anisms can solely be a hardware approach, not modifying the application code, or

accept hints from the software. While prefetching mechanisms are independent from

the application flow, they are still tightly related to and can be imagined as a con-

current process predicting memory accesses of the main process. Overviewing the

prefetching literature since 19781, four major challenges should be addressed for pre-

fetching to achieve performance improvment: prefetching timeliness (distance), ac-

curacy, excessive bandwidth usage, and cache pollution. i) timeliness: a prefetch

request should be initiated with proper timing so it can lower the overall memory

access latency. If initiated too early, data might be evicted in the cache before be-

1We refer readers to study [86] for work prior to this.

131

ing used, returning no benefit. If initiated too late, and near the time that demand

fetch happens, prefetching will not reduce memory latency. To address this, previous

work propose to set the prefetching distance statically for the next Nth access [12, 20]

or adjust the distance adaptively [103, 55]. ii) accuracy: a prefetching mechanism

should assure the addresses (of future demand fetches) are being predicted with high

accuracy. This might be trivial for simple patterns (e.g. iterating through an array

sequentially [32]), but involves a complicated compiler pass on sophisticated patterns

(e.g. pointer-chasing patterns [56].) iii) excessive bandwidth: prefetching increases

the memory bandwidth usage of the application significantly. This can negate perfor-

mance, if prefetching is wasting the bandwidth with wrong predictions [2]. Prior work

suggest various heuristics to estimate prefetching usefulness and drop/filter useless

prefetching out [105, 88, 46, 15, 16, 53]. iv) cache pollution: If the prefetched data

share cache space with the demand fetch data, there is a risk that prefetching may

evict lines from the working set of the application. To address this, using a dedicated

prefetch buffer or cache partitioning are suggested [80, 22, 83].

Prefetching in GPU computing has also been investigated. Ryoo et al. [82] in-

vestigated software prefetching in the matrix multiplication test case. They found

prefetching advantageous so long register pressure does not degrade occupancy. Lee

et al. [47] evaluate several hardware prefetching mechanisms. Generally, they found

that memory patterns are highly predictable. They also found out that a significant

challenge stems from excessive memory bandwidth usage and lack of prefetch time-

liness. They introduced a threshold-based heuristic to address these challenges. Jog

et al. [31] report how integrating the warp scheduler into the prefetching mechanism

unchains the real performance potential behind prefetching in GPGPUs. They show

that conventional warp schedulers keep warps at a close pace, accessing nearby cache

blocks during short intervals. If warps are scheduled far apart, then warps can poten-

tially prefetch for each other. They show this careful warp scheduling combined with

a simple prefetcher can yield significant speedup. Sethia et al. [84] used prefetching

as a technique to improve energy-efficiency. They exploited prefetching to improve

memory latency hiding. In addition, they lowered thread-level parallelism to save en-

ergy, while maintaining performance. Jeon et al. [29] found that the memory access

pattern of the threads within the same thread block is strongly strided. In order to

predict memory accesses of the thread block, their main challenge is to find the base

address and stride value. To calculate base addresses, the warp scheduler prioritizes

a single warp (from each thread block) to run ahead of the rest of the warp. The

132

stride value is calculated by subtracting memory addresses that are issued from two

successive warps upon executing the same instruction. Lakshminarayana and Kim

[35] propose an approach for predicting the address of load instructions that depend

on another load instruction. They tune the work for GPGPUs and address cache

pollution by using spare registers’ of the threads for prefetching peace requirements.

The approach taken by TELEPORT is fundamentally different from prefetching,

as unlike prefetching, TELEPORT deals with precalculating (absolute accuracy) and

not speculation. Accuracy is not a concern in TELEPORT as it precisely precalculates

the range of data that will be accessed within each thread block. This is achieved in

two steps: a software step that finds the range as a function of thread block identifier

and a hardware step that evaluates the range by assigning values to thread block

identifiers.

Prefetching and TELEPORT are orthogonal techniques and therefore can be em-

ployed in the same system. Under such circumstances, the prefetching mechanism can

search TELEPORT’s buffer before issuing a prefetch request. This lowers prefetching

memory bandwidth usage as the prefetch request might have hit in the buffer already.

8.5 DRAM Efficiency

Yuan et al. [102] studied DRAM row locality in GPGPUs. They found that the mem-

ory traffic generated by cores has a very high row locality. However, these requests

are reordered on the network on chip (NoC) that connects GPU cores to memory

controllers. Built on this observation, they suggest NoC optimizations to deliver a

performance close to that of complex DRAM schedulers.

Jog et al. [30] observed that when a DRAM row is open, sooner or later, most

columns are read from the row. They suggest prefetching more columns than the

demand (adaptively set between 8 to 16) into the L2 cache when a row is open. They

show that while this can increase the latency of demand fetch stream, the overall

impact on performance is positive as row-conflicts are reduced.

133

Chapter 9

Conclusions and Future Work

9.1 Conclusion

Over the past decade, GPGPUs have become a standard compute-accelerator in high-

performance computing centers. While developing näıve version of an application in

low-level CUDA-like programming models is affordable, optimizing the application in

such models can be very expensive (in terms of development effort) since the opti-

mization space is gigantic. Various optimization techniques have been proposed, well

tested, and matured in low-level programming models and it is the time to apply such

optimizations by compiler automatically or by hints. This is the reason behind the

invent of high-level accelerator programming models. OpenACC programming API,

for example, allows the programmer to port serial C/Fortran code to GPU by adding

few directives. High-level programming models mainly rely on compiler innovations

to apply well-tested optimizations on the code and perform close to hand-written

low-level equivalents. In this dissertation, we analyzed performance limitations of

high-level programming models, compared them to low-level programming models,

and proposed solutions to address these limitations.

We started by evaluating the performance gap between high-level and low-level

programming models, OpenACC versus CUDA specifically. We developed our in-

house OpenACC compiler, referred to as IPMACC. IPMACC translates OpenACC

for C files to CUDA files and uses NVIDIA nvcc compiler for compiling CUDA files

and generating GPU binaries. IPMACC is publically available on github [37]. Our

goal in developing IPMACC was to implement OpenACC as near to CUDA version

as possible. This creates a platform to accurately comment on the performance gap

134

between OpenACC and CUDA. We used IPMACC for comparing OpenACC and

CUDA versions of 10 benchmarks. We reported the breakdown of the time spent in

i) data movements between CPU and GPU, ii) launching kernels on the GPU, and

iii) running the kernels on the GPU. We showed that the OpenACC version of the

application can be up to 2.6X slower than the equivalent CUDA version. We found

that most benchmarks spend roughly the same amount of time on data movements

under both OpenACC and CUDA. However, comparing the kernel launch and run-

time, we found that low-level software-managed cache optimizations that are applied

in CUDA versions are the main reasons behind large performance gaps between Ope-

nACC and CUDA. Motivated by this observation, we proposed solutions to address

this limitation.

Initially, we investigated potential benefits in OpenACC programming API avail-

able by utilizing GPU software-managed cache. The cache directive in OpenACC

hints the compiler to cache a subarray in the highest level of the cache. We suggested

three different implementations of the cache directive, plus various optimizations

on top of each implementation. We found cache sharing optimization essential for

boosting the cache directive’s performance. To tune our cache implementation for

best performance, we derived a set of micro-benchmarks to understand global mem-

ory and software-managed cache of the GPUs. For instance, we found that adding

a small padding during allocation of software-managed cache vastly resolves bank

conflicts. We used these findings in optimizing our cache directive (and generally

our OpenACC) implementation. We studied the configuration space of our proposal

under three different benchmarks. We showed that our best implementation is able to

significantly shrink the performance gap between OpenACC and CUDA, accelerating

the baseline OpenACC version by up to 2.4X. We also measured the development

effort advantages of OpenACC over CUDA in software-managed cache programming.

In terms of number of statements, we found that OpenACC comes with 29% lower

development effort than CUDA.

Although the cache directive allows utilizing software-managed cache in Ope-

nACC, the directive does not offer the full functionality associated with the software-

managed cache. In CUDA, for instance, threads may communicate through software-

managed cache locally. This local communication is very beneficial to the overall

performance as it reduces the total number of global memory accesses and kernel

launches. In OpenACC, however, the communication model among loop iterations

is not defined and iterations may not communicate through software-managed cache.

135

We identified and explained the limitations of the cache directive in fully utilizing

the software-managed cache potential. To address these limitations, we proposed to

extend the OpenACC API with a new directive, referred to as the fcw directive. We

introduced a communication model along with the fcw directive that allows a certain

range of subsequent iterations to communicate through the software-managed cache.

The fcw directive and cache directive can be used interchangeably for caching a range

of read-only data in the software-managed cache and have the exact same performance

and development effort. However, the applicability of the fcw directive is wider than

the cache directive. The fcw directive can be used for exchanging data among loop

iterations through software-managed cache. We applied the fcw directive to six dif-

ferent benchmarks to should how this local communication can unleash OpenACC

performance and reduce the performance gap between OpenACC and CUDA. For

example, under Hotspot benchmark, we showed that the fcw directive improves the

performance of the baseline OpenACC (that does not use software-managed cache)

by up to 2.8X and lowers the performance gap between OpenACC and CUDA down

to 10% (from 206%).

While the cache and fcw directive lower the development effort of software-

managed cache programming, they still require the developer to analyze the code and

find the caching opportunity. In Chapter 7, we showed that static compiler passes can

automatically identify very high percentage of the caching opportunities in GPGPU.

We proposed a hardware/software mechanism, referred to as TELEPORT, to fully

automate the software-managed cache programming to exploit these caching oppor-

tunities. TELEPORT starts with analyzing the static CUDA kernel code at compile

time and identifying caching opportunities. TELEPORT reads the array indexes and

if it can resolve the array index in a particular format, then it considers the array

for caching. We introduced an API call to capsulate this information and pass it

to the GPU hardware. These API calls are injected before the kernel launch call to

pass the information to the GPU, right before the kernel launch. During runtime,

the range associated with each thread block is calculated and fetched into the GPU

core that the thread block is scheduled on. We evaluated TELEPORT under diverse

set of benchmarks, showing both opportunities and limitations of the mechanism.

We compared TELEPORT to the baseline (without software-managed cache) and

the hand-written CUDA version optimized for software-managed cache. Compared

to hand-written version, TELEPORT lowers the development effort by 46% to 188%.

Compared to the baseline, TELEPORT improves the performance by 1% to 120%.

136

TELEPORT does not replace CUDA software-managed cache programming. Because

TELEPORT is limited by the intelligence of the static compiler pass it may not al-

ways be possible to use it to implement complex software-managed cache algorithms.

We showed this limitation in our evaluation by investigating PTF benchmark. In

summary, if TELEPORT is able to implement the same caching algorithm as CUDA,

it results in the following four advantages over CUDA: i) executing lower number of

dynamic instructions, ii) improving DRAM row locality by sending subsequent col-

umn reads in a burst, iii) reducing memory latency by sending requests in advance,

and iv) improving GPU core occupancy.

9.2 Moving Forward

In Chapter 6 we introduced a novel directive to allow controlling software-managed

cache through OpenACC API. We believe there is room for performance improvement

in the proposed directive by optimizing the implementation further. For example, syn-

chronizations overhead of fetching tiles to software-managed cache can be significant

if there are multiple tiles to fetch (e.g. matrix-matrix multiplication). Static heuris-

tics are required to figure out if the tiles are equal in length and if they can be fetched

using a single common loop. Currently, our only heuristic is if the range identifiers

are the same for two fcw clauses, they can be merged and fetched via a single common

loop. However, in matrix-matrix multiplication sample, the heuristic is unable to find

the opportunity for merging the two tile fetching loops in one common loop. This is

because the heuristic is unable to statically conclude that the two tiles are equal in

length. Improving this heuristic can enhance performance further.

Static analyzer in TELEPORT parses the kernel and finds arrays with the caching

opportunity. In the implementation of TELEPORT introduced in Chapter 7, all of

these arrays are considered for caching and API calls are injected to cache these

arrays during runtime. However, this might not be optimal way to cache all these

arrays at the beginning. Firstly, caching all arrays can cause buffer overflow. This

can be avoided by selectively caching the arrays. One heuristic, for example, can

be to prioritize arrays based on the access frequency. Secondly, all arrays may not

be needed at the beginning. Instead, arrays can be scheduled to be cached slightly

in advance, not necessarily at the beginning. This also helps avoiding the buffer

overflow and reduces the cache space demand at the beginning. We believe there is

an opportunity to improve TELEPORT by tuning the API calls.

137

Appendix A

Code Modification for fcw

Directive

A.1 Pathfinder

Listing A.1 and A.2 show baseline and fcw implementations of Pathfinder. The fcw

version implements the ghost zone algorithm and differs from the baseline in four

ways. Firstly, the most outer loop in the baseline is divided into inner and outer loops.

Secondly, the number of iterations of the parallel loop is increased to allow enough

parallel threads for redundant ghost zone calculations. Also part of the code maps

the loop inductive variable to the output index. Thirdly, fcw directive is added over

the most inner loop. The fcw type is FETCH CHANNEL which allows intermediate

writes to be visible to neighbor threads. Finally, the final state of the local copy (in

the software-managed cache) is written back by the loop iterations that were active

in recent iterations. True value of the boolean variable, named computed in the code,

indicates that the thread was active in the last inner iteration of the ghost zone and

should write the final value back to global memory.

Listing A.1: Pathfinder baseline OpenACC.

#pragma acc data copyin(src[0:cols],data[0:rows*cols]) copyout(dst[0:cols])

{

for (int t = 0; t < rows-1; t++) {

temp = src;

src = dst;

dst = temp;

138

#pragma acc kernels

#pragma acc loop private(min) independent

for(int n = 0; n < cols; n++){

min = src[n];

if (n > 0)

min = MIN(min, src[n-1]);

if (n < cols-1)

min = MIN(min, src[n+1]);

dst[n] = (data[(t+1)*cols+n]) + min ;

}

}

}

Listing A.2: Pathfinder fcw OpenACC.

#define TILESIZE 256

#define TILESIZELOG 8

#pragma acc data copyin(src[0:cols],data[0:rows*cols]) copyout(dst[0:cols])

{

for (int t=0; t < rows-1; t+=inner_iter){

temp = src;

src = dst;

dst = temp;

int pad=((cols/(TILESIZE-2*inner_iter))+1)*inner_iter*2;

#pragma acc kernels

#pragma acc loop private(min) independent vector(TILESIZE)

for(int np=0; np<(cols+pad); np++){

int n=np-((np>>TILESIZELOG)*2*inner_iter+inner_iter);

int localid=np&(TILESIZE-1);

int val=0;

bool computed=false;

#pragma acc fcw FETCH_CHANNEL(src[n:0:0])

{

for(int i=0; i<inner_iter; i++){

int row=t+i+1;

if(row<rows){

computed=false;

139

if(localid>i && localid<(TILESIZE-i-1) && n>=0 && n<cols){

min = src[n];

computed=true;

if (n > 0)

min = MIN(min, src[n-1]);

if (n < (cols-1))

min = MIN(min, src[n+1]);

val = (data[row*cols+n]) + min ;

src[n]=val;

}

}

}

}

if(computed){

dst[n]=val;

}

}

}

}

A.2 Matrix-matrix Multiplication

Listing A.3 and A.4 show baseline and fcw implementations of Matrix-matrix Multi-

plication. The fcw implementation differs from the baseline in two ways. Firstly, the

most inner loop is decomposed into inner and outer loops allowing a different tile of

data to be processed each time. Secondly, the fcw directive is added over the inner

loop to cache the active tile.

Listing A.3: Matrix-matrix multiplication baseline OpenACC.

#pragma acc data pcopyin(a[0:LEN][0:LEN],b[0:LEN][0:LEN])

pcopyout(c[0:LEN][0:LEN])

#pragma acc kernels

#pragma acc loop independent

for (i = 0; i < LEN; ++i) {

#pragma acc loop independent

for(j=0; j<LEN; j++){

140

float sum=0;

for(m=0; m<LEN; m++){

sum += a[i][m]*b[m][j];

}

c[i][j]=sum;

}

}

Listing A.4: Matrix-matrix multiplication fcw OpenACC.

#define MIN(a,b) ((a<b)?a:b)

#pragma acc data pcopyin(a[0:LEN][0:LEN],b[0:LEN][0:LEN])

pcopyout(c[0:LEN][0:LEN])

#pragma acc kernels

#pragma acc loop independent vector(16)

for(i=0; i<LEN; ++i){

#pragma acc loop independent vector(16)

for(j=0; j<LEN; ++j){

float sum=0;

for(l=0; l<LEN; l+=16){

int offseti=(i&(16-1))+l;

int offsetj=(j&(16-1))+l;

#pragma acc fcw FETCH_ONLY(a[i:0:0:offsetj:0:0],b[offseti:0:0:j:0:0])

if(j<LEN && i<LEN){

for(m=l; m<MIN(l+16,LEN); m++){

sum += a[i][m]*b[m][j];

}

}

}

if(j<LEN && i<LEN){

c[i][j]=sum;

}

}

}

141

A.3 Hotspot

Listing A.5 and A.6 show baseline and fcw implementation of Hotspot. Modifications

are very similar to the modifications in Pathfinder (Section A.1) as both benchmarks

implement the ghost zone algorithm. Hotspot is more complex than Pathfinder,

since Hotspot implements the two-dimensional ghost zone. Here fcw code differs

from the baseline in five ways in implementing the two-dimensional ghost zone algo-

rithm. Firstly, iterations of the outer row and column parallel loops are increased to

supply enough threads for the redundant ghost zone calculations. Also the output

identifier of each thread is calculated in early lines of each loop. Secondly, the fcw

directive is added over the inner loop to cache intermediate writes. The fcw type

is FETCH CHANNEL which makes intermediate writes visible to neighbor loop it-

erations. Thirdly, an inner loop is added to perform local iterations. Fourthly, a

guard is added over the calculation body of the inner loop to specify the threads

which must be active in each iteration of the ghost zone. Lastly, the final value of

the software-managed cache is written back to global memory.

Listing A.5: Hotspot baseline OpenACC.

#pragma acc kernels present(temp, power, result)

#pragma acc loop independent

for (r = 0; r < row; r++) {

#pragma acc loop independent

for (c = 0; c < col; c++) {

int S=(r==(row-1))?row-1:r+1;

int N=(r==(0))?0:r-1;

int W=(c==(0))?0:c-1;

int E=(c==(col-1))?col-1:c+1;

delta = (stepCap) * (power[r][c] +

(temp[S][c] + temp[N][c] - 2.0*temp[r][c])*rRy +

(temp[r][E] + temp[r][W] - 2.0*temp[r][c])*rRx +

(amb_temp - temp[r][c])*rRz);

result[r][c] =temp[r][c]+ delta;

}

}

Listing A.6: Hotspot fcw OpenACC.

142

int dimrow=(row+((2*innerIter)*(row/(16-2*innerIter)+1)));

int dimcol=(col+((2*innerIter)*(col/(16-2*innerIter)+1)));

#pragma acc kernels present(temp, power, result, written)

#pragma acc loop independent vector(16)

for (rs=0; rs<dimrow; rs++) {

int r=rs-((rs>>4)*2*innerIter+innerIter);

#pragma acc loop independent vector(16)

for (cs=0; cs<dimcol; cs++) {

int c=cs-((cs>>4)*2*innerIter+innerIter);

double new_temp;

bool compute=false;

int S=(r==(row-1))?row-1:r+1;

int N=(r==(0)) ?0:r-1;

int W=(c==(0)) ?0:c-1;

int E=(c==(col-1))?col-1:c+1;

#pragma acc fcw FETCH_CHANNEL(temp[r:0:0:c:0:0],power[r:0:0:c:0:0])

{

for(int iter=0; iter<innerIter; iter++){

compute=false;

if((r>=0) && (c>=0) && (r<row) && (c<col) &&

(((rs&(16-1))>iter) && ((cs&(16-1))>iter)) &&

(((rs&(16-1))<(16-iter-1))&&((cs&(16-1))<(16-iter-1)))){

compute=true;

delta = (stepCap) * (power[r][c] +

(temp[S][c] + temp[N][c] - 2.0*temp[r][c]) * rRy +

(temp[r][E] + temp[r][W] - 2.0*temp[r][c]) * rRx +

(amb_temp - temp[r][c]) * rRz);

new_temp= delta + temp[r][c];

}

if(iter==(innerIter-1))

break;

if(compute){

temp[r][c] = new_temp;

}

}

}

if(compute){

143

result[r][c] = new_temp;

}

}

}

A.4 N-Body

N-Body simulation has two kernels where one of them can be optimized to take

advantage of software-managed cache. Listing A.7 and A.8 show this kernel under

baseline and fcw implementations. There are two differences between the baseline

and fcw. Firstly, the most inner loop is decomposed to inner and outer to perform

operations on tiles. Secondly, the fcw directive is added over the inner loop to cache

the active tile in the software-managed cache.

Listing A.7: N-Body baseline OpenACC.

#pragma acc data pcopyin(m_force[0:m_numBodies],m_pos[0:m_numBodies])

#pragma acc kernels

#pragma acc loop independent

for (int i = 0; i < m_numBodies; i++){

float3 acc;

acc.x=0;

acc.y=0;

acc.z=0;

float4 pos_p=m_pos[i];

int j = 0;

for(j=0; j< m_numBodies; j++){

bodyBodyInteraction(&acc, pos_p, m_pos[j], m_softeningSquared);

}

m_force[i] = acc;

}

Listing A.8: N-Body fcw OpenACC.

#define TILESIZE 256

#define TILESIZELOG 8

#pragma acc data pcopyin(m_force[0:m_numBodies],m_pos[0:m_numBodies])

144

#pragma acc kernels

#pragma acc loop independent

for(int i=0; i<m_numBodies; i++){

float3 acc;

acc.x=0;

acc.y=0;

acc.z=0;

float4 m_pos_local = m_pos[i];

for(int tile=0; tile<=((m_numBodies>>TILESIZELOG)+1); tile++){

int bound = bnd1<m_numBodies?((tile+1)*TILESIZE):m_numBodies;

#pragma acc fcw FETCH_ONLY(m_pos[(tile*TILESIZE):0:TILESIZE])

for(int j=(tile*TILESIZE); j<bound; j++){

bodyBodyInteraction(&acc, m_pos_local, m_pos[j], m_softeningSquared);

}

}

m_force[i]=acc;

}

145

Bibliography

[1] Ashwin M. Aji, Mayank Daga, and Wu-chun Feng. Bounding the effect of

partition camping in gpu kernels. In Proceedings of the 8th ACM International

Conference on Computing Frontiers, CF ’11, pages 27:1–27:10, New York, NY,

USA, 2011. ACM.

[2] A. R. Alameldeen and D. A. Wood. Interactions between compression and pre-

fetching in chip multiprocessors. In 2007 IEEE 13th International Symposium

on High Performance Computer Architecture, pages 228–239, Feb 2007.

[3] AMD Inc. AMD graphics cores next (GCN) architecture. Available:

https://www.amd.com/Documents/GCN Architecture whitepaper.pdf (Ac-

cessed: 2017-07-12).

[4] M.J. Anderson, D. Sheffield, and K. Keutzer. A predictive model for solving

small linear algebra problems in gpu registers. In Parallel Distributed Processing

Symposium (IPDPS), 2012 IEEE 26th International, pages 2–13, May 2012.

[5] Jorg Arndt. Matters computational. Springer, Chapter 23, 2011.

[6] Eduard Ayguadé, Rosa M. Badia, Pieter Bellens, Daniel Cabrera, Alejandro

Duran, Roger Ferrer, Marc Gonzàlez, Francisco Igual, Daniel Jiménez-González,

Jesús Labarta, Luis Martinell, Xavier Martorell, Rafael Mayo, Josep M. Pérez,

Judit Planas, and Enrique S. Quintana-Ort́ı. Extending openmp to survive the

heterogeneous multi-core era. International Journal of Parallel Programming,

38(5):440–459, 2010.

[7] A Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt. Analyzing

CUDA workloads using a detailed GPU simulator. In Performance Analysis of

Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on,

pages 163–174, April 2009.

146

[8] Michael Bauer, Henry Cook, and Brucek Khailany. Cudadma: Optimizing gpu

memory bandwidth via warp specialization. In Proceedings of 2011 Interna-

tional Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’11, pages 12:1–12:11, New York, NY, USA, 2011. ACM.

[9] Stéphane Bihan, Georges-Emmanuel Moulard, Romain Dolbeau, Henri Calan-

dra, and Rached Abdelkhalek. Directive-based heterogeneous programming–a

GPU-accelerated RTM use case. In Proceedings of the 7th international confer-

ence on computing, communications and control technologies, 2009.

[10] Bill Dally. Challenges for future computing sys-

tems. Keynote speech at The 10th HiPEAC. Available:

http://www.cs.colostate.edu/%7Ecs575dl/Sp2015/Lectures/Dally2015.pdf

(Accessed: 2017-07-12).

[11] Claudio Bonati, Enrico Calore, Simone Coscetti, Massimo D’Elia, Michele

Mesiti, Francesco Negro, Sebastiano Fabio Schifano, and Raffaele Tripiccione.

Development of scientific software for hpc architectures using openacc: The

case of lqcd. In Proceedings of the 2015 International Workshop on Software

Engineering for High Performance Computing in Science, SE4HPCS ’15, pages

9–15, Piscataway, NJ, USA, 2015. IEEE Press.

[12] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching.

In Proceedings of the Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS IV, pages 40–52,

New York, NY, USA, 1991. ACM.

[13] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,

Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heteroge-

neous computing. In Proceedings of the 2009 IEEE International Symposium

on Workload Characterization (IISWC), IISWC ’09, pages 44–54, Washington,

DC, USA, 2009. IEEE Computer Society.

[14] NVIDIA Corp. Profiler’s user guide: nvprof. Available:

http://docs.nvidia.com/cuda/profiler-users-guide/#nvprof-overview (Accessed:

2017-07-12).

[15] E. Ebrahimi, O. Mutlu, and Y. N. Patt. Techniques for bandwidth-efficient pre-

fetching of linked data structures in hybrid prefetching systems. In 2009 IEEE

147

15th International Symposium on High Performance Computer Architecture,

pages 7–17, Feb 2009.

[16] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. Coordinated

control of multiple prefetchers in multi-core systems. In Proceedings of the 42Nd

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

42, pages 316–326, New York, NY, USA, 2009. ACM.

[17] Jianbin Fang, A.L. Varbanescu, Jie Shen, and H. Sips. Elmo: A user-friendly api

to enable local memory in opencl kernels. In Parallel, Distributed and Network-

Based Processing (PDP), 2013 21st Euromicro International Conference on,

pages 375–383, Feb 2013.

[18] Kayvon Fatahalian and Mike Houston. A closer look at gpus. Commun. ACM,

51(10):50–57, October 2008.

[19] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic

warp formation and scheduling for efficient gpu control flow. In Proceedings

of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 40, pages 407–420, Washington, DC, USA, 2007. IEEE Computer So-

ciety.

[20] I. Ganusov and M. Burtscher. Future execution: a hardware prefetching tech-

nique for chip multiprocessors. In 14th International Conference on Parallel Ar-

chitectures and Compilation Techniques (PACT’05), pages 350–360, Sept 2005.

[21] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hard-

wick, Scott Morton, Everett Phillips, Yao Zhang, and Vasily Volkov. Parallel

computing experiences with cuda. IEEE Micro, 28(4):13–27, July 2008.

[22] Binny S. Gill and Dharmendra S. Modha. Sarc: Sequential prefetching in adap-

tive replacement cache. In Proceedings of the Annual Conference on USENIX

Annual Technical Conference, ATEC ’05, pages 33–33, Berkeley, CA, USA,

2005. USENIX Association.

[23] Mark Govett, Jacques Middlecoff, and Tom Henderson. Directive-based par-

allelization of the nim weather model for gpus. In Proceedings of the First

Workshop on Accelerator Programming Using Directives, WACCPD ’14, pages

55–61, Piscataway, NJ, USA, 2014. IEEE Press.

148

[24] The Portland Group. PGI Fortran & C accelerator programming model. Avail-

able: https://www.pgroup.com/lit/whitepapers/pgi accel prog model 1.2.pdf

(Accessed: 2017-07-12).

[25] T. D. Han and T. S. Abdelrahman. hicuda: High-level gpgpu programming.

IEEE Transactions on Parallel and Distributed Systems, 22(1):78–90, Jan 2011.

[26] Mark Harris. Optimizing parallel reduction in CUDA. Available:

http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf (Ac-

cessed: 2017-07-12).

[27] J.A. Herdman, W.P. Gaudin, S. McIntosh-Smith, M. Boulton, D.A. Beck-

ingsale, A.C. Mallinson, and S.A. Jarvis. Accelerating hydrocodes with ope-

nacc, opecl and cuda. In High Performance Computing, Networking, Storage

and Analysis (SCC), 2012 SC Companion:, pages 465–471, Nov 2012.

[28] Tetsuya Hoshino, Naoya Maruyama, and Satoshi Matsuoka. An OpenACC Ex-

tension for Data Layout Transformation. In Proceedings of the First Workshop

on Accelerator Programming Using Directives, WACCPD ’14, pages 12–18, Pis-

cataway, NJ, USA, 2014. IEEE Press.

[29] Hyeran Jeon, Gunjae Koo, and Murali Annavaram. Cta-aware prefetching for

gpgpu. Computer Engineering Technical Report CENG-2014-08, 2014.

[30] Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R.

Das. Owl: Cooperative thread array aware scheduling techniques for improving

gpgpu performance. SIGPLAN Not., 48(4):395–406, March 2013.

[31] Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu,

Ravishankar Iyer, and Chita R. Das. Orchestrated scheduling and prefetching

for gpgpus. In Proceedings of the 40th Annual International Symposium on

Computer Architecture, ISCA ’13, pages 332–343, New York, NY, USA, 2013.

ACM.

[32] Norman P. Jouppi. Improving direct-mapped cache performance by the addition

of a small fully-associative cache and prefetch buffers. In Proceedings of the 17th

Annual International Symposium on Computer Architecture, ISCA ’90, pages

364–373, New York, NY, USA, 1990. ACM.

149

[33] J. Kraus, M. Schlottke, A. Adinetz, and D. Pleiter. Accelerating a c++ cfd

code with openacc. In Accelerator Programming using Directives (WACCPD),

2014 First Workshop on, pages 47–54, Nov 2014.

[34] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In

Proceedings of the 8th Annual Symposium on Computer Architecture, ISCA ’81,

pages 81–87, Los Alamitos, CA, USA, 1981. IEEE Computer Society Press.

[35] N. B. Lakshminarayana and H. Kim. Spare register aware prefetching for graph

algorithms on gpus. In 2014 IEEE 20th International Symposium on High

Performance Computer Architecture (HPCA), pages 614–625, Feb 2014.

[36] A. Lashgar and A. Baniasadi. A case against small data types in gpgpus. In

Application-specific Systems, Architectures and Processors (ASAP), 2014 IEEE

25th International Conference on, pages 108–113, June 2014.

[37] Ahmad Lashgar. IPMACC. Available: http://github.com/lashgar/ipmacc/ (Ac-

cessed: 2017-07-12).

[38] Ahmad Lashgar. Micro-benchmarking CUDA GPUs. Available:

https://github.com/lashgar/microbenchmark (Accessed: 2017-07-12).

[39] Ahmad Lashgar and Amirali Baniasadi. Rethinking prefetching in gpgpus:

Exploiting unique opportunities. In To appear in proceedings of 17th IEEE In-

ternational Conference on High Performance Computing and Communications,

HPCC 2015, New York, NY, USA, 2015.

[40] Ahmad Lashgar and Amirali Baniasadi. Employing software-managed caches

in openacc: Opportunities and benefits. ACM Trans. Model. Perform. Eval.

Comput. Syst., 1(1):2:1–2:34, February 2016.

[41] Ahmad Lashgar and Amirali Baniasadi. OpenACC cache directive: Opportu-

nities and optimizations. In Proceedings of the Third International Workshop

on Accelerator Programming Using Directives, WACCPD ’16, pages 46–56, Pis-

cataway, NJ, USA, 2016. IEEE Press.

[42] Ahmad Lashgar and Amirali Baniasadi. Efficient implementation of OpenACC

cache directive on NVIDIA GPUs. To appear in the International Journal

of High Performance Computing and Networking (IJHPCN), Special Issue on

High-level Programming Approaches for Accelerators, 2017.

150

[43] Ahmad Lashgar, Ebad Lashgar, and Amirali Baniasadi. Understanding out-

standing memory request handling resources in gpgpus. In To appear in pro-

ceedings of The Sixth International Symposium on Highly Efficient Accelerators

and Reconfigurable Technologies, HEART 2015, Boston MA, USA, 2015.

[44] Ahmad Lashgar, Alireza Majidi, and Amirali Baniasadi. IPMACC: Translat-

ing OpenACC API to OpenCL. In In poster session of The 3rd International

Workshop on OpenCL (IWOCL), IWOCL 2015, Stanford University, California,

USA, 2015.

[45] Ahmad Lashgar, Ebad Salehi, and Amirali Baniasadi. A case study in reverse

engineering gpgpus: Outstanding memory handling resources. SIGARCH Com-

put. Archit. News, 43(4):15–21, April 2016.

[46] Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt. Prefetch-

aware dram controllers. In Proceedings of the 41st Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO 41, pages 200–209, Wash-

ington, DC, USA, 2008. IEEE Computer Society.

[47] Jaekyu Lee, Nagesh B. Lakshminarayana, Hyesoon Kim, and Richard Vuduc.

Many-thread aware prefetching mechanisms for gpgpu applications. In Pro-

ceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Mi-

croarchitecture, MICRO ’43, pages 213–224, Washington, DC, USA, 2010. IEEE

Computer Society.

[48] Seyong Lee and Rudolf Eigenmann. OpenMPC: Extended OpenMP program-

ming and tuning for GPUs. In Proceedings of the 2010 ACM/IEEE Interna-

tional Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE Computer

Society.

[49] Seyong Lee and Jeffrey S. Vetter. OpenARC: Extensible OpenACC Compiler

Framework for Directive-based Accelerator Programming Study. In Proceedings

of the First Workshop on Accelerator Programming Using Directives, WACCPD

’14, pages 1–11, Piscataway, NJ, USA, 2014. IEEE Press.

[50] Chao Li, Yi Yang, Hongwen Dai, Shengen Yan, F. Mueller, and Huiyang Zhou.

Understanding the tradeoffs between software-managed vs. hardware-managed

151

caches in gpus. In Performance Analysis of Systems and Software (ISPASS),

2014 IEEE International Symposium on, pages 231–242, March 2014.

[51] Chunhua Liao, Oscar Hernandez, Barbara Chapman, Wenguang Chen, and

Weimin Zheng. Openuh: An optimizing, portable openmp compiler: Research

articles. Concurr. Comput. : Pract. Exper., 19(18):2317–2332, December 2007.

[52] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A unified

graphics and computing architecture. Micro, IEEE, 28(2):39–55, March 2008.

[53] Fang Liu and Yan Solihin. Studying the impact of hardware prefetching and

bandwidth partitioning in chip-multiprocessors. In Proceedings of the ACM

SIGMETRICS Joint International Conference on Measurement and Modeling

of Computer Systems, SIGMETRICS ’11, pages 37–48, New York, NY, USA,

2011. ACM.

[54] Yuxi Liu, Zhibin Yu, Lieven Eeckhout, Vijay Janapa Reddi, Yingwei Luo, Xi-

aolin Wang, Zhenlin Wang, and Chengzhong Xu. Barrier-aware warp scheduling

for throughput processors. In Proceedings of the 2016 International Conference

on Supercomputing, ICS ’16, pages 42:1–42:12, New York, NY, USA, 2016.

ACM.

[55] Jiwei Lu, Howard Chen, Pen-Chung Yew, and Wei-Chung Hsu. Design and

implementation of a lightweight dynamic optimization system. J. Instruction-

Level Parallelism, 6, 2004.

[56] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for recursive

data structures. SIGOPS Oper. Syst. Rev., 30(5):222–233, September 1996.

[57] Stefano Markidis, Jing Gong, Michael Schliephake, Erwin Laure, Alistair Hart,

David Henty, Katherine Heisey, and Paul Fischer. Openacc acceleration of the

nek5000 spectral element code. Int. J. High Perform. Comput. Appl., 29(3):311–

319, August 2015.

[58] S.K. Mathew, M.A. Anders, B. Bloechel, Trang Nguyen, R.K. Krishnamurthy,

and S. Borkar. A 4-ghz 300-mw 64-bit integer execution alu with dual supply

voltages in 90-nm cmos. Solid-State Circuits, IEEE Journal of, 40(1):44–51,

Jan 2005.

152

[59] Jiayuan Meng and Kevin Skadron. Performance modeling and automatic ghost

zone optimization for iterative stencil loops on gpus. In Proceedings of the

23rd International Conference on Supercomputing, ICS ’09, pages 256–265, New

York, NY, USA, 2009. ACM.

[60] S. Moy and J. Lindholm. Across-thread out of order instruction dispatch in a

multithreaded graphics processor, June 23 2005. US Patent App. 10/742,514.

[61] Hitoshi Murai, Masahiro Nakao, Takenori Shimosaka, Akihiro Tabuchi, Taisuke

Bokut, and Mitsuhisa Sato. XcalableACC - a Directive-based Language Exten-

sion for Accelerated Parallel Computing. In Proceedings of the Supercomputing

Conference poster, SC ’14 poster session, Piscataway, NJ, USA, 2014.

[62] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Opti-

mizing nuca organizations and wiring alternatives for large caches with cacti

6.0. In Proceedings of the 40th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO 40, pages 3–14, Washington, DC, USA, 2007.

IEEE Computer Society.

[63] Masahiro Nakao, Hitoshi Murai, Takenori Shimosaka, Akihiro Tabuchi, Toshi-

hiro Hanawa, Yuetsu Kodama, Taisuke Bokut, and Mitsuhisa Sato. Xcal-

ableACC: Extension of XcalableMP PGAS Language Using OpenACC for Ac-

celerator Clusters. In Proceedings of the First Workshop on Accelerator Pro-

gramming Using Directives, WACCPD ’14, pages 27–36, Piscataway, NJ, USA,

2014. IEEE Press.

[64] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel

Programming with CUDA. Queue, 6(2):40–53, March 2008.

[65] Kyle Niemeyer and Chih-Jen Sung. Recent progress and challenges in exploiting

graphics processors in computational fluid dynamics. Journal of Supercomput-

ing, 67(2):528, February 2014.

[66] Matthew Norman, Jeffrey Larkin, Aaron Vose, and Katherine Evans. A case

study of cuda fortran and openacc for an atmospheric climate kernel. Journal

of Computational Science, 9(1):1–6, Jul 2015.

153

[67] NVIDIA Corp. CUDA C Programming Guide. Available:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/ (Accessed: 2017-

07-12).

[68] NVIDIA Corp. CUDA Downloads. Available:

https://developer.nvidia.com/cuda-downloads (Accessed: 2017-07-12).

[69] NVIDIA Corp. GeForce GTX 480. Available:

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-480/specifications

(Accessed: 2017-07-12).

[70] NVIDIA Corp. NVIDIA CUDA occupancy calculator. Available:

http://developer.download.nvidia.com/compute/cuda/CUDA Occupancy calculator.xls

(Accessed: 2017-07-12).

[71] NVIDIA Corp. Nvidia’s next generation CUDA compute architecture: Ke-

pler GK110. Available: http://www.nvidia.ca/content/PDF/kepler/NVIDIA-

Kepler-GK110-Architecture-Whitepaper.pdf (Accessed: 2017-07-12).

[72] NVIDIA Corp. Tesla K20 GPU Accelerator. Available:

http://www.nvidia.com/content/pdf/kepler/tesla-k20-passive-bd-06455-001-

v07.pdf (Accessed: 2017-07-12).

[73] J. P. Lars Nyland and Mark Harris. Gpu Gems 3: chapter 31. Addison-Wesley

Professional, first edition, 2007.

[74] L. Nyland, J.R. Nickolls, G. Hirota, and T. Mandal. Systems and methods

for coalescing memory accesses of parallel threads, March 5 2013. US Patent

8,392,669.

[75] OpenACC. The OpenACC application programming interface ver-

sion 1.0. Available: https://www.openacc.org/sites/default/files/inline-

files/OpenACC 1 0 specification.pdf (Accessed: 2017-07-12).

[76] OpenACC. The OpenACC application programming interface ver-

sion 2.0. Available: https://www.openacc.org/sites/default/files/inline-

files/OpenACC 2 0 specification.pdf (Accessed: 2017-07-12).

154

[77] OpenACC. The OpenACC application programming interface ver-

sion 2.5. Available: https://www.openacc.org/sites/default/files/inline-

files/OpenACC 2pt5.pdf (Accessed: 2017-07-12).

[78] PathScale. Modified rodinia benchmark suite. Available:

https://github.com/pathscale/rodinia (Accessed: 2017-07-12).

[79] M. Pharr and W.R. Mark. ispc: A spmd compiler for high-performance cpu

programming. In Innovative Parallel Computing (InPar), 2012, pages 1–13,

May 2012.

[80] P. Reungsang, Sun Kyu Park, Seh-Woong Jeong, Hyung-Lae Roh, and Gyungho

Lee. Reducing cache pollution of prefetching in a small data cache. In Com-

puter Design, 2001. ICCD 2001. Proceedings. 2001 International Conference

on, pages 530–533, 2001.

[81] Ruyman Reyes, Ivan López-Rodŕıguez, Juan J. Fumero, and Francisco

de Sande. accull: An openacc implementation with cuda and opencl support. In

Proceedings of the 18th International Conference on Parallel Processing, Euro-

Par’12, pages 871–882, Berlin, Heidelberg, 2012. Springer-Verlag.

[82] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi,

Sain-Zee Ueng, John A. Stratton, and Wen-mei W. Hwu. Program optimiza-

tion space pruning for a multithreaded gpu. In Proceedings of the 6th Annual

IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’08, pages 195–204, New York, NY, USA, 2008. ACM.

[83] Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip B. Gibbons,

Michael A. Kozuch, and Todd C. Mowry. Mitigating prefetcher-caused pollution

using informed caching policies for prefetched blocks. ACM Trans. Archit. Code

Optim., 11(4):51:1–51:22, January 2015.

[84] Ankit Sethia, Ganesh Dasika, Mehrzad Samadi, and Scott Mahlke. Apogee:

Adaptive prefetching on gpus for energy efficiency. In Proceedings of the 22Nd

International Conference on Parallel Architectures and Compilation Techniques,

PACT ’13, pages 73–82, Piscataway, NJ, USA, 2013. IEEE Press.

[85] John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing technology

challenges. In Proceedings of the 9th International Conference on High Perfor-

155

mance Computing for Computational Science, VECPAR’10, pages 1–25, Berlin,

Heidelberg, 2011. Springer-Verlag.

[86] A. J. Smith. Sequential program prefetching in memory hierarchies. Computer,

11(12):7–21, Dec 1978.

[87] Alan Jay Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, Septem-

ber 1982.

[88] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching:

Improving the performance and bandwidth-efficiency of hardware prefetchers.

In 2007 IEEE 13th International Symposium on High Performance Computer

Architecture, pages 63–74, Feb 2007.

[89] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen

Chang, Nasser Anssari, Geng Daniel Liu, and Wen-Mei W. Hwu. Parboil: A

revised benchmark suite for scientific and commercial throughput computing.

Center for Reliable and High-Performance Computing (2012).

[90] Akihiro Tabuchi, Masahiro Nakao, and Mitsuhisa Sato. A source-to-source

openacc compiler for cuda. In HeteroPar’2013, 2013.

[91] X. Tian, R. Xu, Y. Yan, Z. Yun, S. Chandrasekaran, and B. Chapman. Compil-

ing a high-level directive-based programming model for gpgpus. In Proceedings

of the 26th International Workshop on Languages and Compilers for High Per-

formance Computing, LCPC 2013, 2013.

[92] Top500.org. Green500 list for november 2016. Available:

https://www.top500.org/green500/lists/2016/11/ (Accessed: 2017-07-12).

[93] Top500.org. TOP500 list for november 2016. Available:

https://www.top500.org/lists/2016/11/ (Accessed: 2017-07-12).

[94] Y. Torres, A Gonzalez-Escribano, and D.R. Llanos. Understanding the impact

of cuda tuning techniques for fermi. In High Performance Computing and Sim-

ulation (HPCS), 2011 International Conference on, pages 631–639, July 2011.

[95] V. Volkov and J.W. Demmel. Benchmarking gpus to tune dense linear algebra.

In High Performance Computing, Networking, Storage and Analysis, 2008. SC

2008. International Conference for, pages 1–11, Nov 2008.

156

[96] Vasily Volkov. Better performance at lower occupancy. GPU Technology Con-

ference 2010 (GTC 2010). Available: http://www.nvidia.com/content/GTC-

2010/pdfs/2238 GTC2010.pdf (Accessed: 2017-07-12).

[97] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. Ope-

nacc: First experiences with real-world applications. In Proceedings of the 18th

International Conference on Parallel Processing, Euro-Par’12, pages 859–870,

Berlin, Heidelberg, 2012. Springer-Verlag.

[98] David Williams, Valeriu Codreanu, Po Yang, Baoquan Liu, Feng Dong, Burhan

Yasar, Babak Mahdian, Alessandro Chiarini, Xia Zhao, and Jos Roerdink. Eval-

uation of autoparallelization toolkits for commodity gpus. In Parallel Processing

and Applied Mathematics, volume 8384, pages 447–457. Springer, 2014.

[99] C.M. Wittenbrink, E. Kilgariff, and A Prabhu. Fermi GF100 GPU architecture.

Micro, IEEE, 31(2):50–59, March 2011.

[100] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. De-

mystifying gpu microarchitecture through microbenchmarking. In Performance

Analysis of Systems Software (ISPASS), 2010 IEEE International Symposium

on, pages 235–246, March 2010.

[101] Rengan Xu, Maxime Hugues, Henri Calandra, Sunita Chandrasekaran, and

Barbara Chapman. Accelerating kirchhoff migration on gpu using directives.

In Proceedings of the First Workshop on Accelerator Programming Using Di-

rectives, WACCPD ’14, pages 37–46, Piscataway, NJ, USA, 2014. IEEE Press.

[102] George L. Yuan, Ali Bakhoda, and Tor M. Aamodt. Complexity effective mem-

ory access scheduling for many-core accelerator architectures. In Proceedings of

the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 42, pages 34–44, New York, NY, USA, 2009. ACM.

[103] Weifeng Zhang, Brad Calder, and Dean M. Tullsen. A self-repairing prefetcher

in an event-driven dynamic optimization framework. In Proceedings of the In-

ternational Symposium on Code Generation and Optimization, CGO ’06, pages

50–64, Washington, DC, USA, 2006. IEEE Computer Society.

157

[104] Ying Zhang, Yue Hu, Bin Li, and Lu Peng. Performance and power analysis

of ati gpu: A statistical approach. In Networking, Architecture and Storage

(NAS), 2011 6th IEEE International Conference on, pages 149–158, July 2011.

[105] X. Zhuang and H. h. S. Lee. Reducing cache pollution via dynamic data prefetch

filtering. IEEE Transactions on Computers, 56(1):18–31, Jan 2007.

